
Robinhood Experiences:
University of Cambridge

Matt Rásó-Barnett, Wojciech Turek
Research Computing Platforms
University of Cambridge

Site Overview

➔ Research Computing Services aims to provide wide-range of Data and Compute services to

researchers across the university
◆ Grown out of a HPC-focused team, broader remit
◆ Lustre forms the core storage platform across our services

➔ Just over 14PiB of Lustre in production. How can we better utilise this, beyond traditional scratch?

How can we make it more resilient?

➔ Looking at Data Tiering in two different directions:
◆ ‘Fast’ NVMe SSD storage tier
◆ Tape-based, archival tier
◆ Lustre in the middle as bulk/primary storage tier

➔ We’re exploring Robinhood + Lustre HSM for managing tiering data to our Tape-archive
◆ We’ve also explored the idea of archiving a whole filesystem via HSM, as a sort of ‘DR’ recovery copy

➔ Robinhood at the centre of our Filesystem analytics → Want to expose information to Users

How we Organise our Lustre

➔ We create many smaller Filesystems instead of

one big Filesystem
◆ Majority are between 1 - 2PiB in size, 14

Filesystems currently
◆ Filesystem boundaries mostly hidden from users

by per-user autofs mounts and symlinks
◆ Mix of Lustre versions, trying to move

everything to IEEL 3.X (Lustre 2.7) currently.

➔ We can spread Filesystems across multiple

Robinhood servers, adding more servers as the

filesystems grow
◆ Currently have 2x MySQL servers in use by

Robinhood, each with SSD-storage and 128GiB
RAM

◆ Everything on Robinhood v3

Robinhood Configuration

➔ Everything is on Robinhood v3 from the beginning (no migration, only small experiments with v2.5)

➔ Currently still early-experiences:
◆ Only about 1PiB being monitored consistently (spread over only our newer Lustre 2.7 filesystems).

Approximately 400M inodes so far.
◆ Haven’t yet reached performance problems with multi-PiB, billions-inodes filesystems in Robinhood.

➔ MariaDB v5.5.56 - Default release from RHEL7.X. Haven’t yet explored whether we should be

using something newer?

➔ We have 2x DB Servers

➔ Monitor via Graphite+Grafana, trying our best to emulate what others have done here

● Dell R730xd 2x E5-2630v3 @ 2.40GHz
● 128GiB RAM
● 20x 400GiB Intel SSD DC S3710 in Raid 10

Cold Storage with HSM

Spectra Logic T950
2x Libraries with ~10PB of Tape per DC

QStar copies data to two tapes - one in each
DC

QStar Archive
Manager

-
Provides Posix

Filesystem interface
to Tape library along

with 300TB Disk
cache

RobinhoodLustre

IEEL 3.1
Lustre 2.7

Small ~200TiB
Filesystem

‘User-interface’

Tier 1 Tier 1.5 Tier 2

HSM Copy Agents

Intel Lemur 0.5.1

Posix-Backend

Run multiple copies as
stateless VM instances

inside Openstack

HSM Experiences: Lemur Copy Tool

➔ Started using Lemur in Oct 2016 after initially using lhsmtool_posix

➔ Our immediate experience using Lemur were a nice improvement

◆ Lemur multi-threaded architecture enabled us to easily increase data throughput such that
we could saturate our HSM backend’s ingest rate (~1GB/s)

◆ Lemur HSM job throughput was faster, could run with much higher setting for
‘max_requests’

◆ Easier to manage, quality of life improvements. Single lhsmd systemd service also manages
Lustre filesystem mounts - made it very easy to deploy as stateless VMs in our Openstack
environment

◆ Lemur uses a UUID stored as an extended attribute in the file for structuring the files on the
HSM backend instead of using the file’s FID which is filesystem dependent.

HSM Experiences: Lemur Copy Tool

Some problems however:

➔ Lemur version 0.5.0+ required for any compatibility with Robinhood

➔ We’ve had trouble getting rbh-undelete functionality to work properly with Lemur, and have
instead written our own simplistic ‘rbh-undelete’ scripts built around the Lemur CLI
functionality ‘lhsm import’ released in Lemur 0.5.1

➔ Worried as Lemur development appears to have stopped, so potentially looking to have to move
away or learn some golang :)

➔ Lemur has some extremely interesting experimental ideas such as doing in-flight checksums in the
copytool - needs development work though to store in the Robinhood DB in some way.

HSM Experiences: MDT / Robinhood

HSM coordinator throughput is our main bottleneck now:

➔ As the number of jobs in the HSM coordinator queue grows large (~few hundred thousand jobs) both the
rate at which jobs are fulfilled by the copytools, and the rate at which jobs are dispatched by Robinhood
policy run, slows down dramatically. We believe the issue has been noticed last year in LU-7988 and
LU-8626

➔ We would definitely welcome the suggestion in LU-8626 for a configurable limit on the number of jobs
that can submitted to the coordinator queue, forcing Robinhood to retry on next policy run instead

➔ More controls, manipulation options for the coordinator’s queue would be really welcome such as:

◆ Not just FIFO - allow configuring ratios of different types of HSM operation so that some amount of
high-priority operations (RESTORE) can be submitted to copytools when there is a large backlog of
ARCHIVE operations (LU-8324 has a patch for this that we are planning to test soon)

◆ Perhaps allow HSM agents to inform the coordinator how many jobs it can process at a time (eg: per-agent
max_requests) - allow for more dynamic scaling up and down the number of HSM agents as needed.

https://www.google.com/url?q=https://jira.hpdd.intel.com/browse/LU-7988&sa=D&ust=1507029150032000&usg=AFQjCNEdIEHb1dXY5-grSckbeukcJNpC_A
https://www.google.com/url?q=https://jira.hpdd.intel.com/browse/LU-8626&sa=D&ust=1507029150032000&usg=AFQjCNEO_zJp519E6GqGGEIu_sExQgr5BA
https://www.google.com/url?q=https://jira.hpdd.intel.com/browse/LU-8324&sa=D&ust=1507029150032000&usg=AFQjCNFEPG9dKuYKRH8BROWc2hsXD6snlg

HSM Experiences: Batch restore?

➔ With Tape as HSM backend, we are

constantly worried about user’s archiving

large numbers of small files and then trying

to restore them all

➔ We are looking into how we could develop

some batch-restore scripts that would

asynchronously restore files from tapes in

the most optimal order for the tape library

Interested in how other sites deal with this

problem?

HSM for Disaster Recovery Copy

➔ We sell our Lustre to researchers on the basis of 1-copy on disk only. Use other platforms for

resilience.

➔ We experimented with the idea of using Lustre HSM to make a continual copy of filesystem data as

a ‘DR’ copy. If we lost a OST, we could then potentially recover part of the volume however slowly

that would be.

➔ One of the motivations for the previously mentioned ‘batch-restore’ scripts we are working on

➔ It would have helped us if we could have an arbitrary number of HSM backends registered,

e.g: one-per OST even, so we could optimise file placement on the HSM backend so files collocated

on an OST are always written to the same set of tapes. This isn’t currently possible - upper limit on

number of HSM backends

➔ Excited about possibility of Lustre 2.11+ File Level Redundancy for this kind of use-case?

Robinhood Stats for Users

➔ Other major use-case for Robinhood is

filesystem metrics for our Storage portal

➔ We’ve developed a self-service portal for

users to purchase Lustre storage space from

us and are working to automate the creation

of this for users in response to a purchase

➔ Working on scripts querying information on a

user or project’s usage from Robinhood /

Lustre quotas and sending this back to the

portal

➔ Lustre 2.10 project quotas will help a lot with

this, but the richer Robinhood information is

very valuable to users too

Summary

➔ Robinhood and Lustre HSM very important for us

➔ Still early-usage, haven’t really pushed the limits of the database *yet*

➔ Using Robinhood + HSM predominantly in a cold-storage area for Researchers

➔ Have struggled a lot with Lustre HSM, still not really where we want to be with it. Have hit a lot of

problems along the way, particularly with the MDT coordinator

➔ Interested in how other sites using Lustre HSM manage it’s weaknesses?

➔ Interested in other sites’ Robinhood monitoring scripts (collectd,graphite or otherwise)

