
RobinHood
Project
Update

October 3rd, 2017

Thomas Leibovici <thomas.leibovici@cea.fr>

FROM RESEARCH TO INDUSTRY

Robinhood User
Group 2017

RUG 2017 | 3 OCTOBER 2017

Topics

Project update
Releases & stats

Community resources

What's new in Robinhood?
New features in robinhood 3.1

RUG'16 issues addressed in robinhood 3.1

What's next?
Next development plans

Project update

RUG 2017 | 3 OCTOBER 2017

Latest Releases

Robinhood 3.0 : Sept 2016
Support:
- RHEL 6, 7
- Validated on Lustre 2.1 to 2.8

Robinhood 3.1 : Sept 2017
Support:
- RHEL 6, 7
- Validated on Lustre 2.1, 2.4, 2.5, 2.7, 2.8, 2.9, 2.10 (no PFL support for now)

No minor releases
Some vendors maintain specific versions for their clients

Get git “master” branch to get the latest fixes

git clone https://github.com/cea­hpc/robinhood.git

RUG 2017 | 3 OCTOBER 2017

04/14 07/14 10/14 01/15 05/15 08/15 11/15 03/16 06/16 09/16 12/16
0

200

400

600

800

1000

1200

1400

1600

Downloads per release

(sourceforge only)

2.5.x

v3

Release date

D
o

w
n

lo
a

d
s

Release Stats

The number of users is still growing
2.5.5 vs 3.0: 1150 → 1400 downloads

2.5.2

2.5.3

2.5.4

2.5.5

2.5.6
3.0-alpha1

3.0-rc1

3.0 (final)

RUG 2017 | 3 OCTOBER 2017

Community Resources

Github: cea-hpc/robinhood
Git repository: https://github.com/cea-hpc/robinhood.git
Documentation in the wiki
Issue reporting/tracking

Gerrithub (code review):
https://review.gerrithub.io
Project: cea-hpc/robinhood
All landings goes through it (please, no “pull requests” on github)
Bound to an automated test system hosted at CEA (jenkins)

Managed by sourceforge:
Mailing lists:
- robinhood-news@lists.sf.net
- robinhood-support@lists.sf.net
- robinhood-devel@lists.sf.net
Download center

What's new in Robinhood 3.1?

RUG 2017 | 3 OCTOBER 2017

Policy workflow until robinhood 3.0

DB

DB request
(basic pre-filtering of entries)

Refresh entry
attributes

(stat, hsm_state...)

Match policy
rules

V3.0 and before

Execute
policy action

Issues:
- Filtering too weak: many returned entries won't match the
rules
→ causes useless attribute refresh & rule matching
- Expensive requests: jerky workflow when using
'max_action_count'

- Bunches of FS operations to refresh entry attributes.
→ Sometimes useless if policy rules don't need fresh attributes
→ Slows down policy runs

- Exploding wait queue of systems with asynchronous actions
(in particular, Lustre/HSM action queue)
- Sub-optimal mix of operations (small vs. big files)

RUG 2017 | 3 OCTOBER 2017

Enhanced policy workflow (robinhood 3.1)

DB request
(full pre-filtering of entries)

V3.1
Enhancements:

● Full conversion of policy rules to DB request
→minimizes entries to be processed

● Smarter and configurable matching behavior
(before and after scheduling)

● Schedulers :
● Can delay, reorder, skip entries...
● Plugins (you can implement your own)
● Stackable
● Provided implementation: “common.rate_limit”

- Allow limiting the rate of actions (count and/or size)

DB

Pre-scheduling
refresh & match

Execute
policy action

Schedulers

Post-scheduling
refresh & match

RUG 2017 | 3 OCTOBER 2017

Enhanced policy workflow (robinhood 3.1)

DB request
(full pre-filtering of entries)

V3.1
Enhancements:

● Full conversion of policy rules to DB request
→minimizes entries to be processed

● Smarter and configurable matching behavior
(before and after scheduling)

● Schedulers :
● Can delay, reorder, skip entries...
● Plugins (you can implement your own)
● Stackable
● Provided implementation: “common.rate_limit”

- Allow limiting the rate of actions (count and/or size)

DB

Pre-scheduling
refresh & match

Execute
policy action

Schedulers

Post-scheduling
refresh & match

RUG 2017 | 3 OCTOBER 2017

Fully converting policy rules to SQL (1/3)

Improve pre-filtering of entries in policy runs
Cray contribution (Davide Tacchella)
What rules were converted to SQL:

No DB pre-filtering for other cases:
More entries are retrieved from the DB and matched in the policy run itself
=> longer policy runs

Before
ignore_fileclass = foo;
ignore_fileclass = moo;
ignore { last_mod < 1h }
ignore { last_access < 1h }

rule single_rule {
 target_fileclass = bar;
 condition { last_access > 1d }
}

Simple ignore statements (fileclass, or single
criteria)

Simple rule conditions, if there is only 1 rule

RUG 2017 | 3 OCTOBER 2017

Fully converting policy rules to SQL (2/3)

All policy rules based on DB fields now converted to SQL:

In robinhood 3.1

ignore_fileclass = foo1;
ignore_fileclass = moo;
ignore { last_mod < 1h and
 (owner == root or name == “save*”) }

rule rule1 {
 target_fileclass = foo2;
 target_fileclass = foo3;
 condition { last_access > 1d
 or (name == *.log and last_mod > 6h) }
}

rule rule2 {
 target_fileclass = boo;
 condition { last_mod > 1h }
}

...

All ignore statements (even with
nested conditions)

All rules even with nested
conditions

Results in faster policy runs

RUG 2017 | 3 OCTOBER 2017

Policy run performance

Example of “alert” policy
Applying an “alert” policy on half a billion entries filesystem, with
1000 entries matching alert rules

Alert rules:

- large files > 500GB

- directories with more than 50k entries

Robinhood 3.0: 1~6 hours

Robinhood 3.1: less than 30 sec

Explanation:
V3.0: millions of entries returned by the SQL request.
Update of entry attributes + rule matching for all these entries.

V3.1: SQL request only select entries matching alert rules.
Update of attributes only for those matching entries.

RUG 2017 | 3 OCTOBER 2017

Fully converting policy rules to SQL (3/3)

Drawback and workarounds

If the contents of the DB is outdated, policy run may not consider some
entries that now match the policy rules

Delay in changelog processing

If your change fileclass definitions

To force rematching entries, set in the policy configuration:

recheck_ignored_entries = yes

This disables the pre-filtering from DB and force rematching policy rules

Or you can define an 'update' policy to update DB contents in background:

define_policy update {
 default_action = none; # simply update entries, run no action
 scope { type == file }
 status_manager = none;
 default_lru_sort_attr = none;
}

RUG 2017 | 3 OCTOBER 2017

Enhanced policy workflow (robinhood 3.1)

DB

DB request
(full pre-filtering of entries)

Pre-scheduling
refresh & match

V3.1

Execute
policy action

Enhancements:

● Full conversion of policy rules to DB request
→minimizes entries to be processed

● Smarter and configurable matching behavior
(before and after scheduling)

● Schedulers :
● Can delay, reorder, skip entries...
● Plugins (you can implement your own)
● Stackable
● Provided implementation: “common.rate_limit”

- Allow limiting the rate of actions (count and/or size)

Schedulers

Post-scheduling
refresh & match

RUG 2017 | 3 OCTOBER 2017

Customizable attribute update for matching

When using schedulers, rule matching is done twice:
A first matching is done before the scheduling to avoid filling scheduler
queues with uninteresting entries
A second time when the action is actually scheduled, to check if the
entry still matches policy rules

The matching behavior and the tested attributes in these 2 steps is
configurable:

- NONE: no matching is done (pass through)
- CACHE_ONLY: the matching is done using attributes from DB (no FS
request)
- AUTO_UPDATE: only attributes needed by the specified policy rules
are refreshed
- FORCE_UPDATE: force updating entries attributes before matching

By default:
Matching before scheduling is based on “cached” attributes
Matching after scheduling is “auto”

RUG 2017 | 3 OCTOBER 2017

How it looks in the configuration

<policy>_parameters {
pre_sched_match = cache_only;
post_sched_match = auto_update;

schedulers = common.rate_limit;

rate_limit {
period_ms = 100;
max_count = 100; # 100/100ms = 1k/sec
max_size = 1GB; # 1GB/100ms = 10GB/sec

}
}

2 new parameters to control attribute refresh & matching
pre_sched_match, post_sched_match

1 new parameter : “schedulers”

Coma-delimited list of schedulers (stackable)

1 configuration block per scheduler

RUG 2017 | 3 OCTOBER 2017

Enhanced policy workflow (robinhood 3.1)

DB

DB request
(full pre-filtering of entries)

Pre-scheduling
refresh & match

V3.1

Execute
policy action

Enhancements:

● Full conversion of policy rules to DB request
→minimizes entries to be processed

● Smarter and configurable matching behavior
(before and after scheduling)

● Schedulers :
● Can delay, reorder, skip entries...
● Plugins (you can implement your own)
● Stackable
● Provided implementation: “common.rate_limit”

- Allow limiting the rate of actions (count and/or size)

Schedulers

Post-scheduling
refresh & match

RUG 2017 | 3 OCTOBER 2017

Schedulers: implement your own

Scheduler are managed as plugins

Provided with robinhood: common.rate_limit, common.max_per_run
You can implement your own: myplugin.sched1, myplugin.sched2, ...

A scheduler provides a function called by robinhood with a callback

sched_schedule(<entry info>, callback_func, callback_param);

The scheduler can then queue the entry internally

When it decides to schedule the action, the scheduler calls the callback function for the
entry

The scheduler can also notify robinhood to:

suspend entry scheduling for a while (e.g. if its internal queues are full)

skip a given entry

stop current run after finishing queued actions

stop current run immediately

A scheduler must also provide functions to manage its internal state:

load configuration, initialize, reset...

RUG 2017 | 3 OCTOBER 2017

Pre/post policy run commands

Running commands before/after policy runs

Simple feature, but useful

Example use-case:

Before run: Create empty list file

Policy run: add path of old files to the list

After run: Send list of old files to users

Specified in <policy>_parameters:

pre_run_command = “my_start_script.sh {fsname}”;

post_run_command = “my_end_script.sh {fsname}”;

RUG 2017 | 3 OCTOBER 2017

New policy plugin: modeguard

Modeguard status manager
Contribution of Stanford University (Stephan Thiell)
Check access rights of entries matching policy scope
Modeguard policies can:

Force setting permission bits of some entries
- e.g. set gid bit for some directories
Force clearing permission bits of some entries
- e.g. clear 'w' flag for other

Configuration example:

%include “includes/modeguard.inc”
modeguard_config {

set_mask = 2000;
clear_mask = 0002;

}
clear 'w' flags of user's directories
modeguard_rules {

rule secure_user_dir {
fileclass = user_dirs;
condition { modeguard.status != ok }

}
}

Audit, report

Enforce

RUG 2017 | 3 OCTOBER 2017

Example policies

More examples in robinhood v3.1
Examples installed in /etc/robinhood.d/templates:

example_alerts.conf
example_checksum.conf
example_cleanup.conf
example_lhsm.conf
example_modeguard.conf
example_rmdir.conf

You can use them as is, or use them as examples to write your own

Note: these config files can be merged if you need to run several of these
policies in a single robinhood instance

RUG 2017 | 3 OCTOBER 2017

Ingest rate optimization (1/2)

Profile when processing changelogs, or scanning

Most of the time spent in mysqld in filesort()

CPU load: ~450% mysqld, ~5-10% robinhood

Due to a request that sorted a list of 1 entry most of the time...
(entry path ordering, most recent first)

Resulted in calling this expensive function in mysqld

RUG 2017 | 3 OCTOBER 2017

Ingest rate optimization (2/2)

After modifying the request

Less time spent in mysqld, different call profile

CPU load: mysqld 300%, robinhood 100%

Robinhood processing speed : about x7 !

Together with other v3.1 optimizations: about x10

RUG 2017 | 3 OCTOBER 2017

REST API & Web UI

REST API & Web UI enhancements

All robinhood info exposed through the REST API

Make it possible to replace parsing of rbh-report output by a stable API

Can be queried remotely with a simple HTTP client

Fine-grained access control (by user, groups, ...)

Plugin mecanism for REST or Web interface

Make it possible to extend the REST API

Make it possible to add custom charts and reports to web interface

New sections provided as plugins: e.g. namespace browsing, internal stats...

Other enhancements

RUG 2017 | 3 OCTOBER 2017

WebGUI plugins: overview

Loaded
plugins

New
sections

Issues exposed at RUG 2016
addressed in robinhood 3.1

RUG 2017 | 3 OCTOBER 2017

RUG'16 issues: Lustre/HSM archive

Stanford University: “max_action_count” has been very useful to avoid too
many Lustre/HSM actions
Cray: no overlap of query/migration

Solutions:
[v3.1] With “rate_limit” scheduler, it is no longer needed to abort policy runs
after a given number of actions. Robinhood just makes 1 query and then emit
requests smoothly without saturating the HSM action queue
Increase db_result_size_max (e.g. 1M)
Use “lru_sort_attr = none” to make the query instantaneous

Result:

query
migration

query

migration

query

migration

query

migration

migration
query

Until no
more entries
match policy
rules

db_result_size_max
or max_action_count
reached

RUG 2017 | 3 OCTOBER 2017

RUG'16 issues: maximize bandwdith and op/sec

Stanford University: Would love an "interleaved archiving mode" to mix
smallfiles and bigfiles

ideally by percent of each (eg. 10% smallfiles, 90% bigfiles)

to push smallfiles while bigfiles are transferring, thus maximizing both transfer
bandwidth and max QPS the cloud provider allows

Solution:

[v3.1] This can now be implemented as an action scheduler plugin

It could maintain 2 internal queues: 1 for small files, 1 for big files and schedule
actions to maintain both high bandwidth and high op/sec

RUG 2017 | 3 OCTOBER 2017

RUG'16 issues: namespace partitioning

DKRZ:
Namespace split into multiple robinhood instances
Several MDTs per instance
“Automatic generation of ignore list in robinhood configuration”

Robinhood 3.1 new feature:
Can restrict namespace scan to a set of directories (scan_only directive)

Much more convenient to add a new directory created with “lfs mkdir”
rather than ignoring all other directories

MDT0000 MDT0001 MDT0002 MDT0003 MDT0004

rbh0 rbh1

fs_scan {
 scan_only = /scratch/project1;
 scan_only = /scratch/project3;
}

fs_scan {
 scan_only = /scratch/project2;
 scan_only = /scratch/project4;
}

Instance 1 Instance 2

RUG 2017 | 3 OCTOBER 2017

RUG'16 wishes: query API

Stanford University: We heavily parse rbh-report, a API would be convenient
for many scripts

Solution:
(v3.1) All information provided by 'rbh-report', 'rbh-find', 'rbh-du' are
now available through the REST API

Work in progress
and future plans

RUG 2017 | 3 OCTOBER 2017

PFL support

PFL support implies deep changes in robinhood
Change the way stripe information is stored

Database schema before PFL: 1 stripe info per file + list of stripes

With PFL: 1 stripe info + list of stripes for each file region

Impact on policy rules:

Criteria before PFL:
ost_pool == “foo” means the file is associated to pool “foo”

What does that mean with PFL?

Option 1: at least one region of the file is stored on pool “foo”

Option 2: change from file-level criteria to region-level criteria

- Implies applying policies to file regions instead of whole files

Refreshing of stripe info:
Based on “layout_gen” => in which PFL cases it changes?
Generation number for regions? Layout swap of regions? HSM flags...

RUG 2017 | 3 OCTOBER 2017

New Database Layering

Goals:
Support multiple types of databases, even NOSQL

- Candidates: MongoDB, PostgreSQL

Leverage // databases

- Unleash robinhood scalability

More flexible DB schema

- Flexible entry id (not only 'fid' or 'inum'), useful for object stores

- Flexible attribute set (custom policies, object stores)

- PFL requirement (compound layout structures)

Status:
Design in progress

RUG 2017 | 3 OCTOBER 2017

Asynchronous accounting

Goals:

Reduce the impact of aggregated stats updated on-the-fly (e.g. total
volume per user…) on performance

Make it possible to distribute this processing on other servers

Make it possible to add new aggregated stats (e.g. per sub-tree, per
process, changelog stats per user, per job, …) at will without impacting
robinhood performance and scalability

Status:

Dependant of database mechanisms (triggers, ...)

Impact of database re-layering

=> integrated to new DB design

RUG 2017 | 3 OCTOBER 2017

Other TODOs

Improve performance of GC at end of scan

Undelete enhancements

non only archived files, but also directories, symlinks...

rbh-find: support more options (e.g. -perm) and more complex combinations
of options (with -and, -or, parenthesis...)

DNE: save MDT stripe info in DB

Can be useful for undelete cases

Can enable new features of reporting...

DNE phase 2: support inode relocation (MIGRTD changelog)

New WebUI features: quota visualisation, nagios plugin, ...

Longer term: redesign the event processing to distribute it to multiple agents
on multiple hosts.

Thank you for your attention !

Questions ?

DAM Île-de-FranceCommissariat à l’énergie atomique et aux énergies alternatives
CEA / DAM Ile-de-France| Bruyères-le-Châtel - 91297 Arpajon Cedex
T. +33 (0)1 69 26 40 00

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

	Cover
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

