
Improving overall Robinhood
performance for use on large-scale

deployments

1

Colin Faber <colin.faber@seagate.com>

© 2017 Seagate Technology LLC

■ Relies on Lustre changelogs which can be difficult to manage, requiring
occasional rescans of the target file system
⎼ Seagate has invested considerable development resources to harden

the Changelog feature

■ Current relational database model leaves room for optimization
⎼ Backing database choice for Robinhood (MySQL with InnoDB

engine) has scaling issues
⎼ Relational database transactions are inherently inefficient
⎼ Environments with high file counts and high change rates result in

processing backlogs
⎼ Alternative database engines (Percona TokuDB / PostgreSQL, and

various others) may be a better fit for large-scale deployments

2

CHALLENGES WITH ROBINHOOD

© 2017 Seagate Technology LLC

Our development work has focused on hardening and improving Robinhood,
esp DB

■ Code improvements for manageability
⎼ Break up large routines and logic blocks
⎼ Introduce a development package to build new features against

■ Database tuning and experiments
■ Lustre client tuning and experiments
■ Developed a plug-in architecture for the ingestor
■ Determined an appropriate sizing guide and techniques for policy engine

systems

3

MITIGATING CHALLENGES WITH ROBINHOOD

© 2017 Seagate Technology LLC

■ A Robinhood-based policy engine system is mostly a large relational
database

■ Each inode on your file system equals 4 or more records in the database
■ Running reports, triggering policies, and utilizing external tools which ship

with Robinhood all generate complex queries to which the database has
to respond

■ A low-powered, low-core count, low CPU frequency machine will result in
a low performance Robinhood policy engine

■ Large-scale file systems need large-scale database systems for
Robinhood to operate against

4

SIZING A POLICY ENGINE SYSTEM APPROPRIATELY

© 2017 Seagate Technology LLC

Database tuning is critical. InnoDB tuning using Percona’s automatic tuning tool
works great!

https://tools.percona.com/wizard

After many experiments we found that our custom tuning was only moderately
better than the Percona tuning wizard.

Sysbench version 0.5 with complex OLTP workload is a great way to exercise
your database before getting Robinhood involved
■ Repeatable / industry standard database benchmark suite
■ Various tuning strategies can be employed and tested
■ Tuning itself can be scripted, allowing for hands off performance discovery

5

DATABASE TUNING

© 2017 Seagate Technology LLC

A faster CPU unsurprisingly means better performance

Surprise surprise! A faster CPU makes for a faster database server

6

DATABASE SYSTEM SIZING (CPU)

© 2017 Seagate Technology LLC 7

DATABASE SYSTEM SIZING (continued)

■ Storage matters, but not as much as CPU and memory
■ CPU core count and clock speed are the biggest factors in performance
■ More memory means more relational data in cache
■ Storage should be proportional to the file system size

⎼ 1+ KB per inode + InnoDB log file size == database size on disk
⎼ The higher the IOP rate, the better

● Many small random block reads and writes

⎼ Solid State / NVMe block device preferred, but disks are reasonable
with large memory

⎼ For us, EXT4 is the file system of choice
● Various things can be tuned, with slight performance gains

© 2017 Seagate Technology LLC 8

DATABASE SYSTEM SIZING (continued)

A software RAID solution can work well for database use

■ Needs extra CPU cycles for block processing

■ Larger chunk size help

■ GPT aligned partitions help

■ Fast Seagate drives help :)

© 2017 Seagate Technology LLC

Simple tuning makes for vast performance improvements

■ Disabling accounting helps significantly
■ Robinhood database threads should be based on sysbench benchmarking

findings
■ Lustre client should be tuned for Robinhood

⎼ Disable various levels of caching (mostly 1-touch)
⎼ Increase RPCs in flight
⎼ Tune statahead
⎼ Flush inode cache regularly

9

ROBINHOOD TUNING

© 2017 Seagate Technology LLC

■ Code refactor
⎼ Seagate has completed large amounts of code refactor work

changing the internal framework to allow for easier changes in the
core application

■ Plug-in architecture
⎼ New framework provides development packages and allows for plug-

in style development within Robinhood record flow systems

■ Performance optimizations
⎼ New plug-ins developed by Seagate contain enhancements to record

flow management, improving overall operational performance

■ Plug-in framework allows for further incremental changes improving
performance

10

SEAGATE ROBINHOOD CONTRIBUTIONS

© 2017 Seagate Technology LLC

■ CUE sorts, categorizes and reduces total changelog record processing
requirements without losing information
⎼ Reducing changelog record flow reduces DB and FS load

● Create-delete pairs
● Consolidate records for each object
⎼ Create, perm change, stripe change, close

⎼ Sorting and categorizing allows for additional enhancements
● Various opportunistic bulk queries (WHERE IN())
● Allows for alternative database strategies (NoSQL sharding, etc)

■ Improves overall Robinhood performance and reduces hardware
requirements

■ Provides a path forward to scale further
11

CHANGELOG UPLOAD ENHANCEMENT (CUE)

© 2017 Seagate Technology LLC

Average performance improvements of a 400+ % reduction in record processing
time and a 40 % reduction in database query load for generalized workloads

(with feature, without feature lower is better)

12

CUE RESULTS SO FAR

© 2017 Seagate Technology LLC

■ Current Robinhood SQL implementation
⎼ Optimized for single transaction operations
⎼ Uses expensive / complex operations

● LEFT JOIN type operations (requires rescan of table space)
● Disallows SHARDing type horizontal scaling strategies

⎼ Currently only works MySQL / SQLite RDBMS

■ Simplification targets:
⎼ Optimize for single transaction bulk operations
⎼ Reduce SQL processing time in common workloads

(DELETE / UPDATE)
⎼ Provide pathway toward alternative relational database engines
⎼ Allow for per-operation / per-function based testing and profiling

13

SQL OPTIMIZATION AND SIMPLIFICATION

© 2017 Seagate Technology LLC

■ Test utilizing multiple concurrent client mounts to the same file system, on
the same client to attempt to avoid Lustre bottlenecks
(Single MDC Semaphore when performing FID lookups fixed in recent
lustre versions)

■ Consolidate SQL query sets into batch transactions where possible
■ Further refinements to the CUE plugin
■ Investigation and porting work into alternative database systems which are

designed for the types of workloads commonly seen within Robinhood
deployments
⎼ Percona’s TokuDB engine
⎼ PostgreSQL
⎼ Various NoSQL implementations

14

NEXT STEPS

Questions?

Thank you!

15

© 2017 Seagate Technology LLC

Sample tuning utilized for scale testing

Overall system setup:
vm.vfs_cache_pressure to 150

Lustre setup:
llite.*.xattr_cache to 0
ldlm.namespaces.*osc*.lru_max_age to 1200

ldlm.namespaces.*osc*.lru_size to 100
osc/*/max_rpcs_in_flight and mdc/*/max_rpcs_in_flight to 256
llite.*.statahead_max to 4

Crontab:
@daily echo 2 > /proc/sys/vm/drop_caches

16

LUSTRE CLIENT TUNING CHEAT SHEET

