Fast Lustre File System Scanning

RUG 2017
Cory Spitz
October 3, 2017



Abstract ==AYf '

)
S \

It can take Robinhood weeks or months to fully scan a large-scale
Lustre file system. Performance could be much better, but the :
scan rate can be throttled by Lustre clients. Despite the fact that
Robinhood doesn’t modify filesystems, scans perform better with

the advent of the so-called ‘multiple modifying metadata RPCs in

flight’ feature. This is because FID lookup causes open/close

activity that was formerly serialized. Even re-mounting the

filesystem read-only does not allow Robinhood to bypass this

throttling. Cray is working to develop a bypass that will unthrottle

client activity for dedicated Robinhood scanning. This talk details

our efforts.



Problem: Lustre serialization cRAY

Q \
S \
\

\
e\

e Typically, an initial scan or rescan is done from a single client
e Naturally, scan time increases with file system size
e Not a snapshot; process can last weeks on large file systems
e S0, we desire better single client performance

e Performance doesn’t increase with larger values of
max_rpcs_in_flight
e FID lookup via llapi_path2fid() requires an open() to issue an ioctl()
e That makes it a 'modifying’ RPC

e Even though RH doesn’t modify the filesystem, we need
max_mod_rpcs_in_flight, available in 2.8.0



Scaling with multiple modify RPCs per client <=I=A:Yf '

. . S \
Time to scan large directory A
(mdc.lustrefs-MDT0000.max_rpcs_in_flight=8)
35
32.79916667 \
30
25
R
S 2 19.73206667
g 16.36873333
)
g 15
10 21399 7.980883333
ol 7.7442 7.509433333
5
0
1 2 3 4 5 6 7

mdec.lustrefs-MDT0000.max_mod_rpcs_in_flight



Workarounds without multi-mod RPCs?

e Problem: few servers are at this version

e OK, so re-mount read-only
e That doesn’t work!
e Need to protect the potential recovery of open-unlinked files

e What about alternate lookup methods?
e We looked at re-implementing path2fid with fid_from_Ima()
e No faster, still needed to get at the xattr
e FID lookup is just inefficient on clients, (FID-in-dirent is not exposed to clients)

e What about multiple mounts?
e Can get us past the MDC semaphore
e Hard to set up in practice



Scan-only mode CRANY

e Back to read-only?

e What if we don’t protect recovery of open-unlinked files?
e Unlink can race with quick open/close
e Do we care? We might leak orphaned files is all

e Scan-only mode patch bypasses MDC semaphore

e Read-only opens and subsequent closes
e getxattr too

e Results in same ~5x speedup as multi-mod RPCs

e “Dangerous” patch hasn’t been submitted, but available upon
request



But one/few at a time is not the way to go AN

(Y \
S \
\

e If | had a billion dollars... and wanted to give it away...©
e ...and you asked for one or even ten dollars at a time \
e That operation fundamentally doesn’t scale
e Similarly, RH is sucking up all this metadata one request at a time

e We could pack more requests into RPCs
e That’s just weak scaling
e We’'re still putting an excessive processing load on the file system

e There has to be a better way



\
Do server side scanning CRAY

e Similar to Ifsck, Lester, or Zester...
e lIterate through inodes on MDT in an efficient order
e Leverage FID-in-dirent

e How to batch updates to consumers?
o Partially explored at LAD ‘16 Dev Summit

e Sergey Cheremencev has proposed a batch method generating
Lustre ChangelLogs

e See: “HSM Initial Scan Optimization”, LAD ’17, Day 2

e \ery promising
e Could be combined with Size-on-Metadata




Merci!



