
RobinHood v3

Integrity check &

thoughts on local VFS changelogs

19 SEPTEMBER 2016

Dominique Martinet <dominique.martinet@cea.fr>

19 septembre 2016

FROM RESEARCH TO INDUSTRY

Robinhood User
Group 2016

RUG 2016 | 19 SEPTEMBER 2016 | 2

Robinhood v3 as announced last year

Robinhood v3 in a nutshell

Plugin-based architecture
More generic and powerful robinhood core
Allows integration of vendor-specific or site-specific modules

Easily implement new policies just by writing a few lines of configuration:
OST rebalancing
Pool-to-pool data migration
Data integrity checks
Trash can mechanism
Massive data conversion
…

RUG 2016 | 19 SEPTEMBER 2016 | 3

Where are we now?

robinhood@home

Been using robinhood v3 to checksum files at home since Feb
Hasn't eaten my data yet
- sadly (fortunately?) no corruption found yet

More usable than my old manual yearly-ish checksum runs
- What's wrong with find /mnt/data -exec kludgy_checksum_script.sh {} + ?

Might as well give examples on tools available

Thoughts on what could be improved next: “VFS changelogs”
working with VFS handles where we can
VFS notification mechanisms

Playing at home with checksums

RUG 2016 | 19 SEPTEMBER 2016 | 5

The checker

New status manager: checker

Three status: '', 'ok' and 'failed'

Manages three attributes:
output – stdout of checker on success (255 first chars)
last_check – unix time of last check
last_success – unix time of... last success

Attributes are kept in DB and available for use in policy commands, report,
find...

Named checker, but very versatile: output can be anything
Run “file” as check command, get statistics of what kind of files we manage
Use checksum as a hash and look for duplicate files
Statistics on multimedia files (size, duration, bitrate...)

Just 150 lines of code!

RUG 2016 | 19 SEPTEMBER 2016 | 6

The checker

Provided checksum script: rbh_cksum.sh

Compute checksum with your preferred tool (keeps first word from stdout)

Has file changed? Use Lustre's data_version if able, or “mtime-size”

Wails if checksum changed with no apparent modification,
Or purrs and possibly stores output in xattr as well as robinhood's DB

> less /etc/sysconfig/rbh_cksum

RBH_CKSUM_CMD=sha1sum

RBH_CKSUM_DV_CMD='lfs data_version'
RBH_CKSUM_DV_CMD='stat -c "%Y-%s"'

RBH_CKSUM_XATTR=user.sha1sum

RUG 2016 | 19 SEPTEMBER 2016 | 7

Configuration

Generic policy

%include “includes/check.inc”

fileclass never_checked {
 definition { checksum.last_success == 0 }
 report = no;
}

checksum_rules {
 ignore { last_mod < 6h }
 ignore { last_check < 45d }

 rule never_checked {
 target_fileclass = never_checked;
 condition = true;
 }

 rule default {
 condition = true;
 }
}

checksum_trigger {
 trigger_on = periodic;
 check_interval = 12h;
}

checksum_parameters {
 nb_threads = 2;
 max_action_volume = 250GB;
 max_action_count = 350000;
 suspend_error_pct = 50%;
 suspend_error_min = 100;
} example rules

(/etc/robinhood.d/templates/example.conf)

define_policy checksum {
 status_manager = checker;
 scope { type == file }
 default_lru_sort_attr = last_check;
 default_action =
 cmd("/usr/sbin/rbh_cksum.sh '{output}' '{path}'");
}

packaged /etc/robinhood.d/includes/check.inc

triggers/params close to v2 syntax, per policy

RUG 2016 | 19 SEPTEMBER 2016 | 8

Running checker

Service

Usually something like:
robinhood --scan --run=all
robinhood --readlog --run=all

Reads /etc/sysconfig/robinhood for options

Can have multiple instances of robinhood running
e.g. one with --scan and one per policy
lets you fiddle with policies without triggering a new scan every restart

Despite all that's said, systemd unit files are nice compared to old init script
332 lines vs. 9 lines

RUG 2016 | 19 SEPTEMBER 2016 | 9

Running checker

One-shot

Same commands given earlier can be run manually

Can add targets & more options
user, file, class, ost... see --help!

> robinhood --run='checksum(target=file:/mnt/data/a/build/robinhood/src/robinhood/robinhood)' -I

2016/09/01 09:13:17 [25512/2] checksum | Checking policy rules for entry
'/mnt/data/a/build/robinhood/src/robinhood/robinhood'
2016/09/01 09:13:17 [25512/2] checksum | Executing policy action on: 3D072B/6906378 (
/mnt/data/a/build/robinhood/src/robinhood/robinhood)
2016/09/01 09:13:17 [25512/2] cmd_stderr | /mnt/data/a/build/robinhood/src/robinhood/robinhood: new
cksum: 1472577979-2516736:64b54f144e9a1802829dc7b28090e27af9759b05
2016/09/01 09:13:17 [25512/2] checksum | Policy run summary: time=01s; target=entry
'/mnt/data/a/build/robinhood/src/robinhood/robinhood'; 1 successful actions (1.00/sec); volume: 2.40 MB
(2.40 MB/sec); 0 entries skipped; 0 errors.

> robinhood --run='checksum(target=file:/mnt/data/a/build/robinhood/src/robinhood/robinhood)' -I

2016/09/01 09:14:05 [25561/2] cmd_stderr | /mnt/data/a/build/robinhood/src/robinhood/robinhood: cksum
OK: 1472577979-2516736:64b54f144e9a1802829dc7b28090e27af9759b05

RUG 2016 | 19 SEPTEMBER 2016 | 10

rbh-report

Summary of checker

rbh-report can give a summary of the checker's activity
split by status
can filter on a given class with -C <class> or other usual options

Example summary report
> rbh-report --status-info checksum
Using config file '/etc/robinhood.d/data.conf'.
checksum.status, type, count, volume, spc_used, avg_size
 , symlink, 24465, 1.36 MB, 21.13 MB, 58
 , dir, 254934, 3.09 MB, 1.02 GB, 13
 , file, 109, 8.91 GB, 8.92 GB, 83.71 MB
 , fifo, 10, 0, 5.00 KB, 0
 , sock, 5, 0, 2.50 KB, 0
 ok, file, 2447721, 4.98 TB, 4.99 TB, 2.13 MB
 failed, file, 0, 0, 0

Total: 2727244 entries, volume: 5483542728084 bytes (4.99 TB), space used:
5502279452672 bytes (5.00 TB)

RUG 2016 | 19 SEPTEMBER 2016 | 11

rbh-find

Find files with a given state

Can dump all files with checker:status syntax

Obviously can combine with all the usual rbh-find options:
path to search
-mtime [-|+]<val>[s|m|h|d|y]
-size [-|+]<val>[K|M|G|T]

Example output:

> rbh-find -status checksum:failed -type f -lsstatus

3D072B/65537 file 1048576 checksum:failed /mnt/data/tests/checkme

RUG 2016 | 19 SEPTEMBER 2016 | 12

Have fun with printf

Can output anything

> rbh-find -status checksum:ok -printf "%Rm{checksum.output} %p\n" -type f
-name policy_run.c

1467457422-93459:3f22725a868a702e1b513b40dc612e3904277590
/mnt/data/a/build/robinhood/src/policies/policy_run.c

 > rbh-find --help
[...]
 %p Full file name
 %Rc File class
 %Rf Lustre FID
 %Rm Status manager module attribute, with the name specified
between curly bracket. The name is the status manager module name, followed by
a dot, followed by the attribute name. For example: %Rm{lhsm.archive_id}.
 %Ro Lustre OSTS
 %Rp Lustre parent FID
[...]

RUG 2016 | 19 SEPTEMBER 2016 | 13

Wishlist

Possible improvements after running a few months

Externally trigger a run with specific non-default conditions
Currently need to define a new rule or fileclass for a one-shot run
- for example, run once on all the failed entries after fixing checker

More complex rules
Can't compare two attributes
- re-run when file is modified (simulate “dirty” state)

robinhood --run='checksum(condition={ status == failed })'

robinhood --run='checksum(target=more_checks,condition={ last_check < 15d })'

rule recheck {
 condition { last_mod < last_check } # caution here last_x is time since last x, not timestamp
}

RUG 2016 | 19 SEPTEMBER 2016 | 14

Wishlist

Possible improvements after running a few months

Multiple rule-targeted triggers
Build multiple policy_run schedules for different set of rules
Allows better optimisation (building specialized DB queries)

checksum_trigger {
 trigger_on = periodic;
 check_interval = 12h;
 trigger_rule = more_checks, never_checked;
}

checksum_trigger {
 trigger_on = periodic;
 check_interval = 15d;
 trigger_rule = default;
}

checksum_rules {
 ignore { last_mod < 6h }
 ignore { last_check < 45d }

 rule more_checks {
 target_fileclass = more_checks;
 condition = true;
 }

 rule never_checked {
 target_fileclass = never_checked;
 condition = true;
 }

 rule default {
 condition { last_check < 180d }
 }
}

RUG 2016 | 19 SEPTEMBER 2016 | 15

Wishlist

Tools improvements

checker script could probably be
improved

vmtouch: evict from cache if file
wasn't already cached

handle partial lustre paths e.g.
<dirfid>/foo/bar

Contributions welcome ! (probably)

Alternatives to changelogs for local
filesystems

RUG 2016 | 19 SEPTEMBER 2016 | 17

Motivation

Changelogs are awesome!

Full rescans are slow

Partial rescans are not enough
cannot tell if missing files were moved or deleted
slow anyway and/or doesn't fit all usages (--no-gc)

Checker can read file from cache if triggered shortly after file creation
Don't trust the first disk write

VFS handles

RUG 2016 | 19 SEPTEMBER 2016 | 19

VFS handles: tracking file movements

name_to_handle_at, open_by_handle_at

Persistent handles
Can store them in the database

Similar to .lustre/fid/<fid>
Actually works with lustre too!
- Lustre handle is binary fid + handle type/size (constant on lustre)
- Other filesystems usually have inode number + generation id as “fid”

Poor man's fid2path: open and check path in /proc/self/fd/
No hard link list

Easy to check if files moved or deleted if we get ENOENT

 ⚠ Does not work with all FS (e.g. NFS)

VFS events

RUG 2016 | 19 SEPTEMBER 2016 | 21

Monitoring file system events

inotify

Set up “watch directories” dir one at a time
New directories need to manually be added to the watch
- Race conditions
- Scalability issues

Complete set of events
data access and modifications (close_nowrite, close_write)
create, delete, move_self, moved_from, moved_to
“attrib” (owner, mode, timestamp, xattr and link count)

 ⚠ move_from does not give fd nor new filename (gives old name)
We can work around that with vfs handles

RUG 2016 | 19 SEPTEMBER 2016 | 22

Monitoring file system events

fanotify

Whole filesystem level
set up once for the mount point

Enumerates data-related events
accesses (open/read)
modify (write/close, close_write or close_nowrite)
only gives an open fd to the files (path through /proc/self/fd)

But. . . Does not catch metadata events
No rename/unlink

(fun fact: can have the kernel ask userland for permission for other
processes to open files)

RUG 2016 | 19 SEPTEMBER 2016 | 23

Hybrid solution

The best of both worlds

fanotify is more suited for whole filesystem watching

which does not mean we can't also use inotify on a list of configurable
directories to catch moves/unlinks

Only works for simple usage patterns, but good enough if policy commands
validate path

already do lstat() before run
easy enough to try open_by_handle_at() and get new path on failures
(or could pass an already open fd to said commands like generic copytool!)

Thank you for your attention !

Questions ?

DAM Île-de-FranceCommissariat à l’énergie atomique et aux énergies alternatives
CEA / DAM Ile-de-France| Bruyères-le-Châtel - 91297 Arpajon Cedex
T. +33 (0)1 69 26 40 00

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

	Cover
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

