
RobinHood v3

SEPTEMBER, 21st 2015

Thomas Leibovici <thomas.leibovici@cea.fr>

16 septembre 2015

FROM RESEARCH TO INDUSTRY

Robinhood User
Group 2015

RUG 2015 | 21 SEPTEMBER 2015

About Robinhood v3

Next major release: robinhood v3.0
Design started early 2014
In development since mid-2014
Cray joined v3.0 development early 2015

What is it about?
Use the policy engine to implement an infinity of use cases

e.g data migration between OSTs, trash mechanisms, integrity checks, data
conversions...
Allow many new usages

Address previous lacks, improve unhandy features
Robustness & code quality
Performances & scalability

RUG 2015 | 21 SEPTEMBER 2015

Disclaimer

Robinhood v3.0 is still under development

Presented outputs, command line options, configuration
parameters may change in the final release

And... It is still time to give your opinion!

RUG 2015 | 21 SEPTEMBER 2015

Generic Policies: Motivation

Before v3
Static set of policies, statically defined
1 mode = 1 robinhood instance = 1 set of commands
Instances can't coexist on the same filesystem

E.g. Lustre/HSM purpose:
Package: robinhood-lhsm
Commands: rbh-lhsm-*
Only implements HSM-related policies (archive, release, remove)
Cannot manage other actions (delete old files, …)

Package
"migration"

policy
"purge“
policy

"hsm_remove"
policy

"rmdir"
policy

robinhood-tmpfs - rm (old files) - rmdir, rm –rf

robinhood-backup Copy to storage
backend

- rm in storage
backend

-

robinhood-lhsm Lustre HSM
archive

Lustre HSM release Lustre HSM
remove

-

Robinhood v2.x packages and policies

RUG 2015 | 21 SEPTEMBER 2015

Generic Policies: Overview

Robinhood v3 generic policies
Robinhood core: generic policy implementation
Specific aspects:

Specified by configuration (policy templates)
Possibly as specific plugins (dynamic libraries)

1 single Robinhood instance for all purposes:

E.g. Managing both lhsm + tmpfs modes + custom :
Single robinhood instance (single DB)
Package: robinhood
Commands: rbh*
Config file: include “templates/lhsm.conf” and “templates/tmpfs.conf”
(results in loading the related plugins)
Sites can define their own custom policies
Vendors can implement and distribute their own templates and/or plugins

Package Generic policies

robinhood Fully configurable

RUG 2015 | 21 SEPTEMBER 2015

Robinhood v3 Plugin-Based Architecture

Robinhood Core
made generic

Purpose-specific code moved
out of robinhood core: now
dynamic plugins loaded at
run-time
All policy behaviors made
configurable
Vendors/users can write their
own plugins for specific needs

RUG 2015 | 21 SEPTEMBER 2015

Plugin Types: Actions

Action plugins (v3.0)

Actions are executed during policy runs

Avoid forking external commands (even if it is still possible)

Can call external APIs

Easy specification in config file

e.g. action = common.unlink ;

Shipped with robinhood v3.0:
common: common filesystem actions (copy, unlink...)

lhsm: Lustre/HSM specific actions

Vendors/users can implement they own actions in additional plugins

RUG 2015 | 21 SEPTEMBER 2015

Plugin Types: Status Managers

Status managers (v3.0)

Manage specific state machines with transitions between states

They provide:
Changelog records callback

Action callbacks

Specific attributes (e.g. archive_id, last_archive, ...)

Specific management of deleted entries

They can interact with external components (e.g. HSM backend)

Vendors/users can provide their own implementations as separate plugins

Previously (v2.x): 1 single entry status for the current robinhood flavor
e.g. Lustre/HSM: “released”

Now in V3: possibly one status per status manager (depends on the defined

policies)
e.g. Lustre/HSM: “released”, Alert: “clear”, IntegrityCheck:”ok”, ...

new

archived

modified

released

RUG 2015 | 21 SEPTEMBER 2015

Policy Status Reporting

Status reports
Status reporting for each configured status manager

Status support in rbh-find

> rbh-report --status-info lhsm
lhsm.status, type, count, spc_used, volume, avg_size
 , dir, 2, 8.00 KB, 8.00 KB, 4.00 KB
 new, file, 3, 0, 0, 0
 modified, file, 1, 4.00 KB, 15, 15
 synchro, file, 8, 4.02 MB, 4.00 MB, 512.00 KB
 released, file, 1, 512, 1.00 MB, 1.00 MB

> rbh-report --status-info alert
alert.status, type, count, spc_used, volume, avg_size
 clear, dir, 2, 8.00 KB, 8.00 KB, 4.00 KB
 clear, file, 11, 3.02 MB, 4.00 MB, 372.37 KB
 alert, file, 2, 1.00 MB, 1.00 MB, 512.00 KB

> rbh-find -status lhsm:released
/mnt/lustre/file.1
/mnt/lustre/file.2
...

RUG 2015 | 21 SEPTEMBER 2015

Custom Policy: Example

Custom policy declaration

Then specify policy rules as usual*:

* “policies” renamed to “rules” in v3 for clarification

declare_policy data_check {
 # manage a simple set of status: “”, “ok”, “failed”
 status_manager = basic;
 scope { type == file && status == "" }
 default_action = cmd(“/usr/bin/mycheck.sh {path}”) ;
}

data_check_rules {
 ignore_fileclass = donotcheck;

 rule check_after1h {
 target_fileclass = myclass1;
 condition { creation > 1h }
 }
 ...
}

RUG 2015 | 21 SEPTEMBER 2015

“Legacy” Policies

Using “legacy” policies
Modules and templates for “legacy” policies are shipped with robinhood
You just need to “include” the right template:

Then specify policy rules as usual*:

 * “migration” renamed to “lhsm_archive” in v3 templates for clarification

%include “templates/lhsm.conf”

lhsm_archive_rules {
 ignore_fileclass = noarchive;

 rule archive_daily {
 target_fileclass = myclass1;
 condition { last_archive> 1d or last_mod > 1d}
 }
 ...
}

RUG 2015 | 21 SEPTEMBER 2015

Configurable Actions

Policy actions can be specified as:
A function defined in a plugin: <module>.<action>
e.g. action = lhsm.archive ;
 action = common.copy ;

An external command
e.g. action = cmd(“/usr/bin/my_copy_wrapper.sh {path} /backup/{path}”);

Actions can be specified at several levels:
In policy declaration

e.g. in specification of “lhsm_archive” policy:
default_action = lhsm.archive;

In policy parameters: user can override the action specified in the policy
template:
action = cmd(“/usr/bin/archive_wrapper.sh {fid}”);

In policy rules: allow different actions depending on targeted fileclass

copy_rules {
 rule copy_local {
 target_fileclass = small_files ;
 action = common.copy;
 ...
 rule copy_remote {
 target_fileclass = big_files ;
 action = cmd(“dcp ...”);
 ...

RUG 2015 | 21 SEPTEMBER 2015

Configurable Action Parameters

Arbitrary action parameters can be specified at multiple levels:
1) As default parameters for a policy

2) In policy triggers

3) In policy rules

4) In fileclass definitions

If not specified, the value of a parameter is inherited from higher levels
If specified at a lower level, the value overrides higher levels

migrate_parameters {
default parameters for the policy
action_params {

stripe_size = 1MB;
stripe_count = 2;

}
action = cmd(“lfs migrate -c {stripe_count} -S {stripe_size}”);

}

migrate_rules {
 rule migrate_small {
 target_fileclass = small_files;
 action_params {
 # override default stripe_count
 stripe_count = 1;
 }
...

RUG 2015 | 21 SEPTEMBER 2015

Running Policies

2 ways to trigger policy runs:
by specifying triggers in the configuration
by running specific command lines

Trigger examples:

Trigger types:
global_usage (overall filesystem usage)
ost_usage
user_usage (volume or #entries)
group_usage (volume or #entries)
scheduled/periodic (always run at scheduled interval, with no condition on
usage)
More to come...

cleanup_trigger {
 trigger_on = ost_usage;
 check_interval = 5min;
 high_watermark_pct = 90%;
 low_watermark_pct = 80%;
}

alert_trigger {
 trigger_on = scheduled;
 check_interval = 24h;
}

RUG 2015 | 21 SEPTEMBER 2015

Manual Policy Runs

Running a given policy on a specific target:
robinhood run=<policy> target=<target> [limit options]

Implemented targets:
all: run the policy on all entries
user:<username>: run on entries of a given user
group:<groupname>: run on entries of a given group
file:<path>: run on a single entry
class:<fileclass>: run on entries of a given fileclass
ost:<ostidx>: run on entries striped on the given OST
pool:<ostidx>: run on entries tagged with the given OST pool

Examples:
apply the "lhsm_release" policy to entries on OST #32
robinhood --run=lhsm_release --target=ost:32

apply the "cleanup" policy to entries of user "foo"
robinhood --run=cleanup --target=user:foo

(re)match alerts for entries of fileclass "small"
robinhood --run=alert --target=class:small

RUG 2015 | 21 SEPTEMBER 2015

Fileclass feature

Recall about fileclasses

Robinhood allows categorizing filesystems contents according to
arbitrary-defined sets called “fileclass”

Fileclass definitions based on entry attributes:

Fileclass big_log {
 definition { name == “*.log”

 and size > 100MB }
}

Fileclass admin_data {
 definition { owner == root

 or tree == /fs/home/root }
}

RUG 2015 | 21 SEPTEMBER 2015

Fileclasses in v2.x

Fileclasses in v2.x were unhandy
Fileclasses were matched using policy rules:

1 fileclass per entry per policy
Only matching fileclasses referenced in policies
Using fileclasses for monitoring only:
needed to define a “dummy” policy

Example of V2.x fileclass report:

purge_policies {
 policy purge1 {
 target_fileclass = small_files;
 target_fileclass = std_files;
 ...
 }
 policy purge2 {
 target_fileclass = big_files;
 …
 policy default {

...
 }
}

V2.x: fileclasses in policy rules

> rbh-report --class-info

migr. class , status, count, spc_used, ...
small_files , n/a, 9288, 26.18 MB,
big_files , new, 7, 244.00 GB,
small_files , modified, 1, 4.00 KB,
std_files , new, 16, 34.78 GB,

purge class , status, count, spc_used, ...
small_files , synchro, 7, 244.00 KB,
[ignored] , synchro, 16730117, 4.12 TB,
std_files , released, 349384, 534.00 GB,
[default] , released, 3, 1.50 KB,

RUG 2015 | 21 SEPTEMBER 2015

New fileclass implementation

In v3:
Fileclass matching is independent from policies

Just need to define fileclasses to match them
(unless you explicitly specify “report = no”)

An entry can match several fileclasses
Allow mapping filesystem contents using various criteria
e.g. small vs. big
 log vs. data vs. ...

Fileclass reports indicate fileclass combinaisons:

Fileclasses can still be used in policy rules
target_fileclass = …

> rbh-report --class-info

fileclass , count, spc_used, ...
small+log+admin , 9288, 26.18 MB,
big+log+user , 7, 244.00 GB,
small+user , 16730117, 4.12 TB,
small+user+important, 349384, 534.00 GB,
std+user+tmp , 263273, 344.65 GB,

RUG 2015 | 21 SEPTEMBER 2015

Robustness and Code Quality

Robustness & code quality
SQL requests in ListMgr now built using glib2 strings

Eliminate risks of overflows for large requests (e.g. wide stripes)
Clean many Coverity warnings
Lighten the code

Automated Valgrind validation
The whole test suite runs under valgrind and checks valgrind errors

Factorized duplicate code patterns
V2.5: 55k lines of code
V3.0: 52k lines of code

Modernized code
- stdbool, callback-based iterators, lower case source files and functions, ...

[b_3.0]> git diff -r 2.5.5 --stat

417 files changed, 44852 insertions(+), 46653 deletions(-)

RUG 2015 | 21 SEPTEMBER 2015

What About Performance?

Most performance improvements developped in branch v3
have been backported to release v2.5.5

Other major improvements scheduled for next releases 3.1, 3.x...

RUG 2015 | 21 SEPTEMBER 2015

When Can I Play?

Current status
Most of the development is done
Current status is almost “alpha” (for lhsm and tmpfs features)
You can start playing with it by getting branch “b_3.0” from git

Still to be done
Legacy “backup” mode not yet functional
Undelete and disaster recovery for Lustre/HSM
A few minor bugs to be fixed
User documentation
V2.5 to v3 upgrade helpers

Beta is targeted in Q4 2015
Final version Q1 2016

RUG 2015 | 21 SEPTEMBER 2015

Release Cycle

V3 release cycle
V3.0 is a first step, but we plan other major changes in the short-term
(see Henri's talk)
It is expected that versions 3.1, 3.2... will follow quickly

RUG 2015 | 21 SEPTEMBER 2015

Conclusion

Robinhood v3 in a nutshell
Plugin-based architecture

More generic and powerful robinhood core
Allows integration of vendor-specific or site-specific modules

Easily implement new policies just by writing a few lines of configuration:
OST rebalancing
Pool-to-pool data migration
Data integrity checks
Trash can mechanism
Massive data conversion
…

Improved robustness and code quality

V3.0 is not the last stop!

Other major improvements to come in the very next releases!

Thank you for your attention !

Questions ?

DAM Île-de-FranceCommissariat à l’énergie atomique et aux énergies alternatives
CEA / DAM Ile-de-France| Bruyères-le-Châtel - 91297 Arpajon Cedex
T. +33 (0)1 69 26 40 00

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

	Cover
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24

