Robinhood v2
Temporary Filesystem Manager
Configuration tutorial

Thomas LEIBOVICI
CEA/DAM

<thomas.leibovici@cea.fr>
V2.0.1-betal

17 Jul. 09

Table of contents

1.

2.

3.
4.

5.
6.

10153 = 11 F= 110 o T TTPPRPP 3
1.1, RODINNOOMo et e e e e 3
T o [0 1T (=T =T 1 3
(@] 3 g1 o] F=1 1o o PP RU PP PPPPPPPPPRPRP 3
1.2, MySQL dat@baseoovuuiuuueiinmmmmmmn e e ettt s e e e e e e e e e e e e e aeeeeeeeeeeeeaaanraan 4
T |81 =] 4 1= o1 PR 4
Creating Robinhood database................ceeeeemmiiiiiii e 4
Run your first RObiNhood INStANCE..........ooviiceeiiiiieeee e 5
2.1, Configuration fileuiiiiiis e e e ———————————————— 5
2.2, RUNNINg robiNN00Od........ccoooiiii 6
2.3. Getting stats on filesystem content...........cccooviiiieiiiiiiiiiie e 6
Scan optioNS ANd AIEITSooiiiiiiiiiiiie e cerrm e 7
Resource monitoring @and PUIGESuuuuuerrruiiiaaaeeeeeeeeeeeeeeeeeeeaeaannnn e e s eneeeeseeeeas 9
o S B 1< i o[g To l o JU T fo =R Lo o = £ 9
4.2, Minimal PUIrge POLICYcooiiiieiieeeetceeem e 10
4.3. RUNNING reSOUrce MONITOMNGet o e eeeeeerrnnnnnnaaaaaeseeeaeeeeeeeeesssnennneesernes 10
4.4, PUIQE PATAIMETEIS .. .ccvuiiiieiieeees s s e e e et s e e et e e e et e e e et e e e ennnseeeesaneeeenns 11
4.5, USING fil@ ClASSESuuuuiiiiiiiie e e e e e 11
EMpty dir€Ctory remMoOVal...........cooiiiiii i 13
RODINNOOA ON LUSLIE ... e e e e e e e e e e e 14

The purpose of this document is to guide you ferftrst steps of Robinhood installation and
configuration. We will first run a very simple iastce of Robinhood for monitoring purpose
only. Then we will configure it for purging fileshen disk space is missing. Finally we will
deal with more advanced usage, by defining fileaatsassociating different purge policies to
them.

1. Installation
1.1. Robinhood

Requirements

Before building Robinhood, make sure the followpagkages are installed on your system:
* mysql-devel
* lustre API library (if Robinhood is to be run o.astre filesystem):
‘lusr/include/liblustreapi.h’ and ‘/usr/lib/liblustapi.a’

Compilation

Retrieve Robinhood tarball from sourceforbtp://sourceforge.net/projects/robinhood

Unzip and untar the sources:

tar zxvf robinhood-2.0.1.tar.gz
cd robinhood-2.0.1

Then, use the “configure” script to generate Mdksfi
- use the-with-purpose=TMP_FS_MGR option for using it as a temporary filesystem
manager;
- set the prefix of installation path (default isr/lecal) with ‘--prefix=<path>

Jconfigure --with-purpose=TMP_FS_MGR --with-db=MYS QL --prefix=/usr
Finally, build the RPM:

make rpm

A ready-to-install RPM is generated in the ‘rpmsi&7<arch>’ directory. The RPM is
tagged with the lustre version it was built for.

The RPM includes:
- ‘robinhood’ and ‘robinhood-report’ binaries
- Configuration templates
- Man pages
- /etcl/init.d/robinhood script

1.2. MySQL database

Robinhood needs a MySQL database for storing it ddois database can run on a different
machine than the Robinhood program.

Requirements

Install mysgl andmysqgl-server packages on the node where you want to run tlabdse
engine.

Start the database engine:
service mysqld start

Creating Robinhood database

With the helper script:
To easily create robinhood database, you can esgctipt provided in distribution tarball:
robinhood-2.0.1/scripts/create_db.sh

Run this script on the database host. It will chgalr system configuration and perform the
database creation steps.

...or manually:

Alternatively, if you want a better control on tlatabase configuration and access rights, you
can perform the following steps of your own:

» Create the database (one per filesystem) usingyiégadmin command:
mysgladmin create <robinhood_db_name>

» Connect to the database:
mysqgl <robinhood_db_name>

Then execute the following commands in the MySQdsgm:

0 GRANT USAGE ONrobinhood_db_name.* TO ‘robinhood’ @'%’
identified by ‘password’;

O GRANT ALL PRIVILEGES ON robinhood_db_name.* TO ‘robinhood’@'%’
identified by ‘password’;

0 Refresh server access settings:
FLUSH PRIVILEGES ;

0 You can check user privileges using:
SHOW GRANTS FOR robinhood ;

» For testing access to database, execute the folipgommand on the machine where
robinhood will be running :

mysql --user= robinhood --password= password --host= db_host
robinhood_db_name

If the command is successful, a SQL shell is stafdse, you will get a ‘permission
denied’ error.

At this time, the database schema is empty. Rolokhall automatically create it the first
time it is launched.

2. Run your first Robinhood instance

Let's begin with a simple case: we want to montte content oftmp ext3 filesystem, by
scanning it periodically.

2.1. Configuration file

We first need to write a very basic configuratide:fafter installing robinhood rpm, get the
template fileletc/robinhood.d/templates/tmp_fs_mgr_tuto.conf
It contains the minimal set of configuration vate

General

fs_path = "/tmp";
fs_type = ext3;

}

Log
log_file = "Ivar/log/robinhood/tmp_fs.log ;
report_file = "/var/log/robinhood/reports.lo a";
alert_file = "Ivar/log/robinhood/alerts.log";

}

ListManager
MySQL

server = db_host;

db = robinhood_test;

user = robinhood;

password_file = /etc/robinhood.d/.dbpass;

General section:

‘fs_path’ is the mount point of the filesystem wamwto monitor.

‘fs_type’ is the type of filesystem (as returnedrhgunt). This parameter is used for sanity
checks.

Log section:
Make sure the log directory exists.

Note: you can also use special values ‘stderrstaout’ for log files, so you can directly read
log messages in your terminal when testing youfigaration.

ListManager::MySQL section:

This section is for configuring database access.

Set the host name of the database sersenvef parameter), the database nanub (
parameter), the database usaese(parameter) and specify a file where you wrote the
password for connecting to the databgmssgvord_file parameter).

I\ Make sure the password file cannot be read by @ser, by setting it a ‘600’ mode for
example.

If you don’t care about security, you can direcpecify the password in the configuration
file, by setting thepassword parameter.

E.Q.: password = ‘passwOrd’ ;

2.2. Running robinhood

For this first example, we just want to scan thesfistem once and exit, so we can get stats
about current content of /tmp.

Thus, we are going to run robinhood command with‘tkscan’ option, and the ‘--one-shot’
option so it will exit when the scan is finishege8ify the configuration file using the ‘—’
option.

If you want to override configuration values fogléile, use the ‘—L’ option. For example,
let’s use ‘-L stdout’

robinhood —f /etc/robinhood.d/test.conf —L stdout - -scan --one-shot
That's it!

You should get something like this:

2009/07/17 13:49:06: FS Scan | Starting scan of /tm p

2009/07/17 13:49:06: FS Scan | Full scan of /tmp co mpleted, 7130 entries
found. Duration = 0.07s

2009/07/17 13:49:06: FS Scan | File list of /tmp ha s been updated
2009/07/17 13:49:06: Main | All tasks done! Exiting .

2.3. Getting stats on filesystem content

Now we performed a scan, we can get stats abous,ulkes, directories, etc. using the
robinhood-report command.

* Getting stats about user ‘foo’:

robinhood-report —f /etc/robinhood.d/test.conf —u f 00
User: foo

Type: directory

Count: 90

Space used: 720.00 KB (1440 blks)

Dircount min: 0

Dircount max: 54

Dircount avg: 8

Type: file

Count: 609

Space used: 20.26 MB (41496 blks)
Size min: 8 (8 bytes)

Size max: 1.05 MB (1096625 bytes)
Size avg: 27.21 KB (27865 bytes)
Type: symlink

Count: 9

Space used: 36.00 KB (72 blks)
Size min: 13 (13 bytes)

Size max: 22 (22 bytes)

Size avg: 17 (17 bytes)

» Getting largest files:
robinhood-report —f /etc/robinhood.d/test.conf —to psize

Rank: 1

Path: /tmp/robinhood-2.0.1.betal/rpms/ BUILD/robinhood-
2.0.1.betal/src/Robinhood/robinhood-report

Size: 1.05 MB (1096625 bytes)

Last access: 2009/07/15 14:25:45

Last modification: 2009/07/15 14:25:44

Owner/Group: foo/grpl

Rank: 2

Path: /tmp/robinhood-2.0.1.betal/rpms/ BUILD/robinhood-
2.0.1.betal/src/Robinhood/robinhood

Size: 1.03 MB (1080539 bytes)

Last access: 2009/07/15 14:25:44
Last modification: 2009/07/15 14:25:43
Owner/Group: foo/grp2

« Getting top space consummers:

robinhood-report —f /etc/robinhood.d/test.conf —to pusers
Rank: 1

User: foo

Space used: 21.00 MB (43008 blks)
Nb entries: 708

Size min: 8 (8 bytes)

Size max: 1.05 MB (1096625 bytes)
Size avg: 23.92 KB (24489 bytes)
Rank: 2

User: root

Space used: 32.00 KB (64 blks)

Nb entries: 4

Size min: 112 (112 bytes)

Size max: 4.00 KB (4096 bytes)
Size avg: 2.05 KB (2104 bytes)

Get more details about available reports runnioignhood-report --help

3. Scan options and alerts

In the first example, we have used Robinhood asma-5hot’ command. It can also be used as
a daemon that will periodically scan the filesystim updating its database. You can also
configure alerts when entries in the filesystemaha condition you specified.

Let’s configure Robinhood to scan the filesysterneoa day.

Add a FS_Scan section to the config file:

FS_Scan
{
min_scan_interval = 1d;
max_scan_interval = 1d;
nb_threads_scan = 2;
Ignore
t . |
ignore ".snapshot" and ".snapdir" directo ries (don't scan them)
type == directory
and
(name == ".snapdir" or name == ".snapshot")
}
Ignore
{

ignore the content of /tmp/dirl
tree == “/tmp/dirl”

}
}
It is possible to have a dynamic scan interval,ed€ng on filesystem usage. For this
example, we want a constant scan interval so we nsetscan_interval and
max_scan_interval to 1 day {d).

Robinhood uses a parallel algorithm for scanningddilesystems efficiently. You can set the
number of threads used for scanning usingitheéwreads_scan parameter.

You may need to ignore some parts of the filesygléea .snapshot dirs etc...). For this, you
can use a “ignore” sub-block, like in the examplmowae, and specify complex Boolean
expressions on file properties (refer to Robinhamtinin guide for more details about
available attributes).

To create alerts about filesystem entries, addrdaryEBrocessor section to configuration file:

EntryProcessor
{
Alert
{
type == directory
and
dircount > 10000
}
Raise alerts for large files
Alert
{
type == file
and
size > 100GB
}

}

In this example, we want to raise alerts for divgets with more that 10.000 entries and file
larger than 100GB.

Those alerts are written to thiert_file specified in Log section. They can also be sent by
mail by specifying a mail address in thiert_mail parameter of Log section.

Now, let’s run Robinhood as a daemon. Use the taal€ option to start it in background and
detach it from your terminal:

robinhood —f /etc/robinhood.d/test.conf --scan --de tach

4. Resource monitoring and purges

One of the main purpose of robinhood is to mordisk space usage and trigger purges when
disk space runs low.

Purge triggering is based on high/low watermarks fdes removal is based on a LRU list:
when the used space reaches a high watermark, faanwill build a list of least recently
accessed files (from its database) and purge thetith the disk space is back to the low
watermark.

4.1. Defining purge triggers

First of all, let’s specify watermarks levels faggering purge.
This can be done on several criteria:

- Global filesystem usage

- OST usage (for Lustre filesystems)

- User usage (quota-like purge)

Write the following block to configuration file fotriggering purge on global filesystem
usage:

Purge_Trigger
{

trigger_on = global_usage ;
high_watermark_pct = 90% ;
low_watermark_pct =85% ;
check_interval =5min;

}

trigger_on specifies the type of trigger.

high_watermark_pct indicates the disk usage that must be reachestdaing purge.
low_watermark_pct indicates the disk usage that must be reachestdpping purge.
check interval is the interval for checking disk usage.

We can also do the same for users, be specifykngdaof “quota”:
Purge_Trigger

trigger_on = user_usage ;
high_watermark_vol = 10GB ;
low_watermark _vol =9GB ;
check interval =12h;

}

Every 12h, the daemon will check the space usagkbys. If a user uses more than 10GB, its
files will be purged from the least recently aceessntil the space he uses decrease to 9GB.

4.2. Minimal purge policy

Robinhood makes it possible to define differenigeupolicies for several file classes.
In this example, we will only define a single pugdicy for all files.
This can be done in a ‘Purge_Policies’ sectionaoffig file:

Purge_policies

{
Policy default
{
Condition
{
last_access > 1h
}
}
}

‘default’ policy is a special policy that appliesftles that are not in a file class.
In a policy, you must specify a condition for aliogy entries to be purged. In this exemple,
we don’t want recently accessed entries (read atenrwithin the last hour) to be purged.

4.3. Running resource monitoring

Robinhood is now able to monitor disk usage ang@entries when needed.
Start the daemon with the *--purge’ option:

robinhood —f /etc/robinhood.d/test.conf --purge --d etach
You will get something like this in the log file:

Main | Resource Monitor successfully initialized

ResMonitor | Filesystem usage: 92.45% (786901 block s) / high watermark:
90.00% (764426 blocks)

ResMonitor | 34465 blocks (x512) must be purged on Filesystem (used=786901,
target=734426, block size=4096)

Purge | Building a purge list from last full FS Sca n: 2009/07/17 13:49:06
Purge | Starting purge on global filesystem

ResMonitor | Global filesystem purge summary: 34465 blocks purged/34465

blocks needed in /tmp

The list of purged files is written in the repatef

Note 1: you can use the same daemon for perforstags periodically and monitoring
resource, by combining options on command line.

E.g.:robinhood —f /etc/robinhood.d/test.conf --purge --s can —detach

By default, if you start Robinhood with no actianwill perform both.

Note 2: if you do not want to have a daemon on wystem, you can perform resource

monitoring with a ‘one-shot’ command that you caarich in cron, for example:
robinhood —f /etc/robinhood.d/test.conf --purge --0 ne-shot

It will check the disk usage: it will exit immeday if disk usage does not exceed the high
watermark; else, it will purge entries.

4.4. Purge parameters

Actually, the command executed in 4.3 did not puaggthing. Indeed, by default, Robinhood
runs in ‘simulation mode’, to avoid purging filesc&dentally if it is launched with bad
parameters or with an erroneous configuration. Gmeeare satisfied of your policy and the
simulation log looks good to you, you must expljcdisable simulation mode to really purge
files.

Add a “Purge_parameters” block to the configurafit:

Purge_Parameters

{

simulation_mode = FALSE;
nb_threads purge =4;

post_purge_df latency = 1min;
db_result_size_max = 10000;

}

Setsimultation_mode to FALSE to really enable purges.

Purge actions are performed in parallel. You catipthe number of purge threads by
setting thenb_threads purge parameter.

On filesystems where releasing data is asynchrgnimes ‘df command may take a few
minutes before returning an up-to-date value gteging a lot of files. Thus, Robinhood
must wait before checking disk usage again aftepuage. This is driven by the
post_purge df latency parameter.

4.5. Using file classes

Robinhood makes it possible to apply different pupplicies to files, depending on their
properties (path, posix attributes, ...). This candbae by defining file classes that will be
addressed in policies.

In this section of the tutorial, we will define Basses and apply different policies to them:
- We don’t want “*.log” files that owns to ‘root’ tbe purged;
- We want to keep files from directory /tmp/A to bepk longer on disk than files from
other directories.

First, we need to define those file classes, itilasets’ section of the configuration file.
We associate a custom name to each FileClass paedysthe definition of the class:

Filesets

log files owned by root
FileClass root_log_files

{
definition
{
owner == root
and
name == “*.log”
}
}

files in filesystem tree /fs/A
FileClass A_files

{
definition
{
tree == “/fs/A”
}
}

}

Then, those classes can be used in policies:
- entries can be white-listed using a ‘ignore_filsslastatement;
- they can be targeted in a policy, using a ‘targleiclass’ directive.

Purge_Policies

{
whitelist log files of ‘root’
ignore_fileclass = root log file;
keep files in /fs/A at least 12h after their las t access
Policy purge_A files
target_fileclass = A files;
condition
last_access > 12h
}
}
The default policy applies to all other files
(files not in /fs/A and that don’t own to root)
Policy def aul t
{
condition
{
last_access > 1h
}
}
}
Notes:

- agiven FileClass cannot be targeted simultaneanggveral purge policies;
- policies are matched in the order they appear ifigoration file. In particular, if 2
policy targets overlap, the first matching policyiwe used;

- For ignoring entries, you can directly specify andition in the ‘purge_policies’
section, using a ‘ignore’ block:
Purge_Policies

{
Ignore
{
owner == root
and
name == “* log”
}

5. Empty directory removal

Purge after purge, there will be more and more gmipéctories in the filesystem namespace.
Robinhood provides a mechanism for removing dimesothat have been empty for a long
time.

This policy is driven by a ‘rmdir_policy’ section the configuration file. This section only
consists in a single parameter ‘age_rm_emty_dinat indicates the duration after which a
empty directory is removed.

You can also specify a ‘ignore’ condition for diteiges you never want to be removed.

rmdir_policy

{
removing empty directories after 15 days
age_rm_empty_dirs = 15d;

ignore
{
depth < 2
or
owner == ‘foo’
or
tree == [fs/subdir/A

}

By default, directoty removal runs in simulation aeo To really remove empty directories,
you must explicitly disable simulation mode in thdir_parameters’ section:

rmdir_parameters

{
If enabled, daemon doesn't really remove dirs ,
it only reports what it would remove.
simulation_mode = FALSE ;

Interval for performing empty directory remov al
runtime_interval = 12h ;

Number of threads for performing rmdir operat ions
nb_threads_rmdir =4 ;

In this section, you can also specify the periadcftecking empty directories
(runtime_interval parameter).

For running empty directory removal, start robinti@dth the *-rmdir ’ option:

robinhood —f /etc/robinhood.d/test.conf --rmdir

6. Robinhood on Lustre

Robinhood provides special features for Lustresfistems:
Purge triggers on OST usage

Robinhood can monitor OST usage independently,taggder purges only for the files of a
given OST when it exceeds a threshold.

E.Q.
Purge_Trigger
{

trigger_on = OST_usage ;
high_watermark_pct = 85% ;

low_water_mark_pct = 80% ;
check_interval = 5min ;

}

File classes/conditions on OST pool names
In Lustre 1.8 release and later, you can use O®Tm@omes for specifying file classes.

E.g.:
Filesets

FileClass dalx_storage

{
}

ost_pool == “dal*”

That's all folks! You should now be able to run adeed monitoring and purge
configurations. For more details about robinhoodfiguration, you can refer to the admin
guide.

