

Robinhood v2

Temporary Filesystem Manager

Configuration tutorial

Thomas LEIBOVICI
CEA/DAM

<thomas.leibovici@cea.fr>

V2.0.1-beta1

17 Jul. 09

Table of contents

1. Installation .. 3

1.1. Robinhood .. 3
Requirements.. 3
Compilation.. 3

1.2. MySQL database .. 4
Requirements.. 4
Creating Robinhood database... 4

2. Run your first Robinhood instance... 5
2.1. Configuration file ... 5
2.2. Running robinhood... 6
2.3. Getting stats on filesystem content... 6

3. Scan options and alerts .. 7
4. Resource monitoring and purges .. 9

4.1. Defining purge triggers .. 9
4.2. Minimal purge policy ... 10
4.3. Running resource monitoring... 10
4.4. Purge parameters .. 11
4.5. Using file classes.. 11

5. Empty directory removal... 13
6. Robinhood on Lustre ... 14

The purpose of this document is to guide you for the first steps of Robinhood installation and
configuration. We will first run a very simple instance of Robinhood for monitoring purpose
only. Then we will configure it for purging files when disk space is missing. Finally we will
deal with more advanced usage, by defining filesets and associating different purge policies to
them.

1. Installation

1.1. Robinhood

Requirements

Before building Robinhood, make sure the following packages are installed on your system:

• mysql-devel
• lustre API library (if Robinhood is to be run on a Lustre filesystem):

‘/usr/include/liblustreapi.h’ and ‘/usr/lib/liblustreapi.a’

Compilation

Retrieve Robinhood tarball from sourceforge: http://sourceforge.net/projects/robinhood

Unzip and untar the sources:

tar zxvf robinhood-2.0.1.tar.gz
cd robinhood-2.0.1

Then, use the “configure” script to generate Makefiles:

- use the --with-purpose=TMP_FS_MGR option for using it as a temporary filesystem
manager;

- set the prefix of installation path (default is /usr/local) with ‘--prefix=<path> ’

./configure --with-purpose=TMP_FS_MGR --with-db=MYS QL --prefix=/usr

Finally, build the RPM:

make rpm

A ready-to-install RPM is generated in the ‘rpms/RPMS/<arch>’ directory. The RPM is
tagged with the lustre version it was built for.

The RPM includes:

- ‘robinhood’ and ‘robinhood-report’ binaries
- Configuration templates
- Man pages
- /etc/init.d/robinhood script

1.2. MySQL database

Robinhood needs a MySQL database for storing its data. This database can run on a different
machine than the Robinhood program.

Requirements

Install mysql and mysql-server packages on the node where you want to run the database
engine.

Start the database engine:
service mysqld start

Creating Robinhood database

With the helper script:

To easily create robinhood database, you can use the script provided in distribution tarball:

robinhood-2.0.1/scripts/create_db.sh

Run this script on the database host. It will check your system configuration and perform the
database creation steps.

…or manually:

Alternatively, if you want a better control on the database configuration and access rights, you
can perform the following steps of your own:

• Create the database (one per filesystem) using the mysqladmin command:
mysqladmin create <robinhood_db_name>

• Connect to the database:

mysql <robinhood_db_name>

Then execute the following commands in the MySQL session:

o GRANT USAGE ON robinhood_db_name.* TO ‘robinhood’@’%’
identified by ‘password’;

o GRANT ALL PRIVILEGES ON robinhood_db_name.* TO ‘robinhood’@’%’
identified by ‘password’;

o Refresh server access settings:
FLUSH PRIVILEGES ;

o You can check user privileges using:
SHOW GRANTS FOR robinhood ;

• For testing access to database, execute the following command on the machine where
robinhood will be running :

mysql --user= robinhood --password= password --host= db_host
robinhood_db_name

If the command is successful, a SQL shell is started. Else, you will get a ‘permission
denied’ error.

At this time, the database schema is empty. Robinhood will automatically create it the first
time it is launched.

2. Run your first Robinhood instance

Let’s begin with a simple case: we want to monitor the content of /tmp ext3 filesystem, by
scanning it periodically.

2.1. Configuration file

We first need to write a very basic configuration file: after installing robinhood rpm, get the
template file /etc/robinhood.d/templates/tmp_fs_mgr_tuto.conf .
It contains the minimal set of configuration variables:

General
{
 fs_path = "/tmp";
 fs_type = ext3;
}

Log
{
 log_file = "/var/log/robinhood/tmp_fs.log ";
 report_file = "/var/log/robinhood/reports.lo g";
 alert_file = "/var/log/robinhood/alerts.log";
}

ListManager
{
 MySQL
 {
 server = db_host;
 db = robinhood_test;
 user = robinhood;
 password_file = /etc/robinhood.d/.dbpass;
 }
}

General section:
‘fs_path’ is the mount point of the filesystem we want to monitor.
‘fs_type’ is the type of filesystem (as returned by mount). This parameter is used for sanity
checks.

Log section:
Make sure the log directory exists.

Note: you can also use special values ‘stderr’ or ‘stdout’ for log files, so you can directly read
log messages in your terminal when testing your configuration.

ListManager::MySQL section:
This section is for configuring database access.
Set the host name of the database server (server parameter), the database name (db
parameter), the database user (user parameter) and specify a file where you wrote the
password for connecting to the database (password_file parameter).
/!\ Make sure the password file cannot be read by any user, by setting it a ‘600’ mode for
example.
If you don’t care about security, you can directly specify the password in the configuration
file, by setting the password parameter.
E.g.: password = ‘passw0rd’ ;

2.2. Running robinhood

For this first example, we just want to scan the filesystem once and exit, so we can get stats
about current content of /tmp.
Thus, we are going to run robinhood command with the ‘--scan’ option, and the ‘--one-shot’
option so it will exit when the scan is finished. Specify the configuration file using the ‘–f’
option.
If you want to override configuration values for log file, use the ‘–L’ option. For example,
let’s use ‘-L stdout’

robinhood –f /etc/robinhood.d/test.conf –L stdout - -scan --one-shot

That’s it!
You should get something like this:

2009/07/17 13:49:06: FS Scan | Starting scan of /tm p
2009/07/17 13:49:06: FS Scan | Full scan of /tmp co mpleted, 7130 entries
found. Duration = 0.07s
2009/07/17 13:49:06: FS Scan | File list of /tmp ha s been updated
2009/07/17 13:49:06: Main | All tasks done! Exiting .

2.3. Getting stats on filesystem content

Now we performed a scan, we can get stats about users, files, directories, etc. using the
robinhood-report command.

• Getting stats about user ‘foo’:

robinhood-report –f /etc/robinhood.d/test.conf –u f oo

User: foo

 Type: directory
 Count: 90
 Space used: 720.00 KB (1440 blks)
 Dircount min: 0
 Dircount max: 54
 Dircount avg: 8

 Type: file
 Count: 609
 Space used: 20.26 MB (41496 blks)
 Size min: 8 (8 bytes)
 Size max: 1.05 MB (1096625 bytes)
 Size avg: 27.21 KB (27865 bytes)

 Type: symlink
 Count: 9
 Space used: 36.00 KB (72 blks)
 Size min: 13 (13 bytes)
 Size max: 22 (22 bytes)
 Size avg: 17 (17 bytes)

• Getting largest files:

robinhood-report –f /etc/robinhood.d/test.conf –-to psize

Rank: 1
Path: /tmp/robinhood-2.0.1.beta1/rpms/ BUILD/robinhood-
2.0.1.beta1/src/Robinhood/robinhood-report
Size: 1.05 MB (1096625 bytes)
Last access: 2009/07/15 14:25:45
Last modification: 2009/07/15 14:25:44
Owner/Group: foo/grp1

Rank: 2
Path: /tmp/robinhood-2.0.1.beta1/rpms/ BUILD/robinhood-
2.0.1.beta1/src/Robinhood/robinhood
Size: 1.03 MB (1080539 bytes)
Last access: 2009/07/15 14:25:44
Last modification: 2009/07/15 14:25:43
Owner/Group: foo/grp2

...

• Getting top space consummers:

robinhood-report –f /etc/robinhood.d/test.conf –-to pusers

Rank: 1
User: foo
Space used: 21.00 MB (43008 blks)
Nb entries: 708
Size min: 8 (8 bytes)
Size max: 1.05 MB (1096625 bytes)
Size avg: 23.92 KB (24489 bytes)

Rank: 2
User: root
Space used: 32.00 KB (64 blks)
Nb entries: 4
Size min: 112 (112 bytes)
Size max: 4.00 KB (4096 bytes)
Size avg: 2.05 KB (2104 bytes)

...

Get more details about available reports running ‘robinhood-report --help ’.

3. Scan options and alerts

In the first example, we have used Robinhood as a ‘one-shot’ command. It can also be used as
a daemon that will periodically scan the filesystem for updating its database. You can also
configure alerts when entries in the filesystem match a condition you specified.

Let’s configure Robinhood to scan the filesystem once a day.

Add a FS_Scan section to the config file:

FS_Scan
{
 min_scan_interval = 1d ;
 max_scan_interval = 1d ;

 nb_threads_scan = 2 ;

 Ignore
 {
 # ignore ".snapshot" and ".snapdir" directo ries (don't scan them)
 type == directory
 and
 (name == ".snapdir" or name == ".snapshot")
 }

 Ignore
 {
 # ignore the content of /tmp/dir1
 tree == “/tmp/dir1”
 }
}

It is possible to have a dynamic scan interval, depending on filesystem usage. For this
example, we want a constant scan interval so we set min_scan_interval and
max_scan_interval to 1 day (1d).

Robinhood uses a parallel algorithm for scanning large filesystems efficiently. You can set the
number of threads used for scanning using the nb_threads_scan parameter.

You may need to ignore some parts of the filesystem (like .snapshot dirs etc…). For this, you
can use a “ignore” sub-block, like in the example above, and specify complex Boolean
expressions on file properties (refer to Robinhood admin guide for more details about
available attributes).

To create alerts about filesystem entries, add an EntryProcessor section to configuration file:

EntryProcessor
{
 Alert
 {
 type == directory
 and
 dircount > 10000
 }

 # Raise alerts for large files
 Alert
 {
 type == file
 and
 size > 100GB
 }
}

In this example, we want to raise alerts for directories with more that 10.000 entries and file
larger than 100GB.
Those alerts are written to the alert_file specified in Log section. They can also be sent by
mail by specifying a mail address in the alert_mail parameter of Log section.

Now, let’s run Robinhood as a daemon. Use the ‘--detach’ option to start it in background and
detach it from your terminal:

 robinhood –f /etc/robinhood.d/test.conf --scan --de tach

4. Resource monitoring and purges

One of the main purpose of robinhood is to monitor disk space usage and trigger purges when
disk space runs low.
Purge triggering is based on high/low watermarks and files removal is based on a LRU list:
when the used space reaches a high watermark, Robinhood will build a list of least recently
accessed files (from its database) and purge them until the disk space is back to the low
watermark.

4.1. Defining purge triggers

First of all, let’s specify watermarks levels for triggering purge.
This can be done on several criteria:

- Global filesystem usage
- OST usage (for Lustre filesystems)
- User usage (quota-like purge)

Write the following block to configuration file for triggering purge on global filesystem
usage:

Purge_Trigger
{
 trigger_on = global_usage ;
 high_watermark_pct = 90% ;
 low_watermark_pct = 85% ;
 check_interval = 5min ;
}

trigger_on specifies the type of trigger.
high_watermark_pct indicates the disk usage that must be reached for starting purge.
low_watermark_pct indicates the disk usage that must be reached for stopping purge.
check_interval is the interval for checking disk usage.

We can also do the same for users, be specifying a kind of “quota”:

Purge_Trigger
{
 trigger_on = user_usage ;
 high_watermark_vol = 10GB ;
 low_watermark_vol = 9GB ;
 check_interval = 12h ;

}

Every 12h, the daemon will check the space used by users. If a user uses more than 10GB, its
files will be purged from the least recently accessed until the space he uses decrease to 9GB.

4.2. Minimal purge policy

Robinhood makes it possible to define different purge policies for several file classes.
In this example, we will only define a single purge policy for all files.
This can be done in a ‘Purge_Policies’ section of config file:

Purge_policies
{
 Policy default
 {
 Condition
 {
 last_access > 1h
 }
 }
}

‘default’ policy is a special policy that applies to files that are not in a file class.
In a policy, you must specify a condition for allowing entries to be purged. In this exemple,
we don’t want recently accessed entries (read or written within the last hour) to be purged.

4.3. Running resource monitoring

Robinhood is now able to monitor disk usage and purge entries when needed.
Start the daemon with the ‘--purge’ option:

robinhood –f /etc/robinhood.d/test.conf --purge --d etach

You will get something like this in the log file:

Main | Resource Monitor successfully initialized
ResMonitor | Filesystem usage: 92.45% (786901 block s) / high watermark:
90.00% (764426 blocks)
ResMonitor | 34465 blocks (x512) must be purged on Filesystem (used=786901,
target=734426, block size=4096)
Purge | Building a purge list from last full FS Sca n: 2009/07/17 13:49:06
Purge | Starting purge on global filesystem
ResMonitor | Global filesystem purge summary: 34465 blocks purged/34465
blocks needed in /tmp

The list of purged files is written in the report file.

Note 1: you can use the same daemon for performing scans periodically and monitoring
resource, by combining options on command line.
E.g.: robinhood –f /etc/robinhood.d/test.conf --purge --s can –detach

By default, if you start Robinhood with no action, it will perform both.

Note 2: if you do not want to have a daemon on your system, you can perform resource
monitoring with a ‘one-shot’ command that you can launch in cron, for example:
robinhood –f /etc/robinhood.d/test.conf --purge --o ne-shot
It will check the disk usage: it will exit immediately if disk usage does not exceed the high
watermark; else, it will purge entries.

4.4. Purge parameters

Actually, the command executed in 4.3 did not purge anything. Indeed, by default, Robinhood
runs in ‘simulation mode’, to avoid purging files accidentally if it is launched with bad
parameters or with an erroneous configuration. Once you are satisfied of your policy and the
simulation log looks good to you, you must explicitly disable simulation mode to really purge
files.

Add a “Purge_parameters” block to the configuration file:

Purge_Parameters
{
 simulation_mode = FALSE;
 nb_threads_purge = 4;
 post_purge_df_latency = 1min;
 db_result_size_max = 10000;
}

Set simultation_mode to FALSE to really enable purges.
Purge actions are performed in parallel. You can specify the number of purge threads by
setting the nb_threads_purge parameter.
On filesystems where releasing data is asynchronous, the ‘df’ command may take a few
minutes before returning an up-to-date value after purging a lot of files. Thus, Robinhood
must wait before checking disk usage again after a purge. This is driven by the
post_purge_df_latency parameter.

4.5. Using file classes

Robinhood makes it possible to apply different purge policies to files, depending on their
properties (path, posix attributes, …). This can be done by defining file classes that will be
addressed in policies.

In this section of the tutorial, we will define 3 classes and apply different policies to them:

- We don’t want “*.log” files that owns to ‘root’ to be purged;
- We want to keep files from directory /tmp/A to be kept longer on disk than files from

other directories.

First, we need to define those file classes, in a ‘filesets’ section of the configuration file.
We associate a custom name to each FileClass, and specify the definition of the class:

Filesets
{
 # log files owned by root

FileClass root_log_files
 {
 definition
 {
 owner == root
 and
 name == “*.log”
 }
 }

 # files in filesystem tree /fs/A
 FileClass A_files
 {
 definition
 {
 tree == “/fs/A”
 }
 }

}

Then, those classes can be used in policies:
- entries can be white-listed using a ‘ignore_fileclass’ statement;
- they can be targeted in a policy, using a ‘target_fileclass’ directive.

Purge_Policies
{
 # whitelist log files of ‘root’
 ignore_fileclass = root_log_file;

 # keep files in /fs/A at least 12h after their las t access

Policy purge_A_files
 {
 target_fileclass = A_files;
 condition
 {
 last_access > 12h
 }
 }

 # The default policy applies to all other files
 # (files not in /fs/A and that don’t own to root)
 Policy default
 {
 condition
 {
 last_access > 1h
 }
 }
}

Notes:

- a given FileClass cannot be targeted simultaneously in several purge policies;
- policies are matched in the order they appear in configuration file. In particular, if 2

policy targets overlap, the first matching policy will be used;

- For ignoring entries, you can directly specify a condition in the ‘purge_policies’
section, using a ‘ignore’ block:
Purge_Policies
{

Ignore
{
 owner == root
 and
 name == “*.log”
}

…

5. Empty directory removal

Purge after purge, there will be more and more empty directories in the filesystem namespace.
Robinhood provides a mechanism for removing directories that have been empty for a long
time.
This policy is driven by a ‘rmdir_policy’ section in the configuration file. This section only
consists in a single parameter ‘age_rm_emty_dirs’, that indicates the duration after which a
empty directory is removed.
You can also specify a ‘ignore’ condition for directories you never want to be removed.

rmdir_policy
{
 # removing empty directories after 15 days
 age_rm_empty_dirs = 15d;

 ignore
 {
 depth < 2
 or
 owner == ‘foo’
 or
 tree == /fs/subdir/A
 }
}

By default, directoty removal runs in simulation mode. To really remove empty directories,
you must explicitly disable simulation mode in the ‘rmdir_parameters’ section:

rmdir_parameters
{
 # If enabled, daemon doesn't really remove dirs ,
 # it only reports what it would remove.
 simulation_mode = FALSE ;

 # Interval for performing empty directory remov al
 runtime_interval = 12h ;

 # Number of threads for performing rmdir operat ions
 nb_threads_rmdir = 4 ;
}

In this section, you can also specify the period for checking empty directories
(runtime_interval parameter).

For running empty directory removal, start robinhood with the ‘--rmdir ’ option:

robinhood –f /etc/robinhood.d/test.conf --rmdir

6. Robinhood on Lustre

Robinhood provides special features for Lustre filesystems:

Purge triggers on OST usage

Robinhood can monitor OST usage independently, and trigger purges only for the files of a
given OST when it exceeds a threshold.

E.g.:
Purge_Trigger
{

trigger_on = OST_usage ;
high_watermark_pct = 85% ;
low_water_mark_pct = 80% ;
check_interval = 5min ;

}

File classes/conditions on OST pool names

In Lustre 1.8 release and later, you can use OST pool names for specifying file classes.

E.g.:
Filesets
{
 FileClass da1x_storage
 {
 ost_pool == “da1*”
 }
}

That’s all folks! You should now be able to run advanced monitoring and purge
configurations. For more details about robinhood configuration, you can refer to the admin
guide.

