Robinhood v2
Lustre-HSM Policy Engine

Admin Guide

Thomas LEIBOVICI
CEA/DAM
<thomas.leibovici@cea.fr>

V2.1.2

9" of February, 2010

Table of contents

R o (o To 1§ [A 01 V=T V=P TPPPPPPP 3
P O U101 Q] = o PP 4
2.1 Compilation and iNStallationmmeeeeeeeeriirmre e e e eeereeeeeeeeeeeeeeeeeeennn.. 4
2.2 Database CONfIQUIALION.............uii e e e e e e ee e e e eeeeeeeeeeneees 5
2.3 LUStre ChanQgelOgs SELUDuuuuu s e e et e e e e et ee ettt e e e e e eeene e s e e e e aeeeeeas 6
24 PolicyEngine (basic) CoNfiguration........ccccc.eeuueeeeiiiiniinee e 7
2.5 15 0 U TP PPPPPP 8
2.6 Minimal Migration POIICY........uuuuuueii s 9
2.7 MiniMal PUIGE POIICY .uvueeeiii et e e e e e e e e e e e eenneeeeeennnne 10
2.8 USING fil@ CIASSESo 10
2.9 Minimal ‘hSm_remove’ POLICYccooiii e e e e e eeene e 12
2.10 RUNNING IN PrOQUCTION....ccoii ittt e e e e e e e e e e e ee b bennnneeeeeseennnns 12
I Oo] oo [0 = a0 T =] (=] (=] [o = SRR 14
3.1)Y 1= GO PUPPUPPPRRTRPPPPPIN 14
3.2 Configuration template and default parameters............cccoovvvviciiiiiiiiieeeeeeenn, 17
3.3 GENErAl PArAMELEIS.....uuieiiiiiei e s ettt e e eeeaaa e e e e e e e aaaaeas 17
3.4 [0 [0 [ol o= Uc= 10 41=] (=T ¢S 17
3.5 File class definitioNuuuueieee e 18
3.6 PUIQE POLICIES ...t eeee e e e e e e e e e e e e aaeeeeens 19
3.7 PUIGE THIQOEIS et eeeeeeer ettt eeea e e e e e e e e e e e e e aeeees 20
3.8 PUIQE PAraMELEIS .. .cvuiiiiiiii et o sttt e et e et e e e et e e e enmee e e e ea e e eennns 22
3.9 Migration POLICIESeueiiiee et r e e e e e e e e e 22
3.10 Migration PArameterScccceiieeeescccccemeeeeeeeeea s e e e e e e e e eeeeeeeeeeeeeeesrennnn—eaannnnnnna 23
3.11 About MIgration NINES........ccooiiii i eeeee s 24
3.12 HSM_remoOVe POICYcccceeiiiiiieieeeet e et e e e e e ettt ettt s e e e e e e enaeaneaaaeaaaees 25
3.13 HSM_IremoOVe ParamMeEterS.cccuuuuu e e seeeeeeetiaeeeeeeessnaaaaeeessnaaaaaaaeeees 25
3.14 Database ParamelerS.......ccccieii i e e ceeeeeeeeiiss e e e e e e e e e e e e e e e e ee e ——————————————— 25
3.15 Filesystem SCaN ParamMeterS..........icccceeeeeuruniiiaaae e e e e e e e eeeeeeeeeeeeeeeernnnnnseeennnnns 26
3.16 Entry processor pipeling OPLiONSccccoieeiiiiiieeeeeerr e e e a e e 27
4 The ‘rh-hsSm’ COMMANG ..o s 28
4.1 EXECULION MOAESuuiiiiiiiiiiiiiiiis e ettt e e e e e e e e e e s st e e e e e e s e e s annes 28
4.2 Command liNE OPLIONScooiiiiiiiiiiiieemmmme e e 29
e T [0 1 = | PSRRI 31
5 REPOMING tOO] ...euuiiiiiiii eeeeerraaaaes 31
5.1 OVEIVIEW i eeeeme ettt et e e e e e e e e e e e e e e e e s ettt be e e e ee e e e e e e e n e e annnans 31
5.2 COMMANT TN .t e e e e e e et e e e e eeeeeeeeeerennnnes 31
5.3 = 0o £ T PP UPPP 32

KNOWN DUGS ..ttt ettt ettt e e s eeee e e s s e e e e e e e e e e eaeeeeeesnnnnes 36

1 Product overview

“Robinhood FS Monitor” is Open-Source software deped at CEA/DAM. It can be used as
a PolicyEngine for Lustre-HSM.

It runs as a user-space daemon, and collects iatamfrom Lustre to be aware of filesystem
state, file status, to make policy decisions:

* Itis notified of important HSM events by Lustreatigelogs:
- when a file becomes “dirty” in Lustre;
- when afile is copied to/from the back-end stor@dBM);
- when afile is removed from Lustre.

» It retrieves information about file, using POSIXddiblustreapi calls:
- POSIX attributes
- path
- stripe information (OST, pool...)
- Lustre-HSM specific flagsafchived, dirty, released, ...)

* File information is stored persistently in a trastganal database.
- Changelogs records are managed in DB transactsonspne of them can be
missed or lost.
- Scanning filesystem namespace is rarely needey:atriirst setup time, or in
case of a database disaster.

» It monitors OST space usage, and release disk spae needed. It has the ability to
purge files per OST. It releases archived filesrfrime least recently used, according
to custom policies.

It also makes archiving decisions, using custoniezabnd flexible policies.
It can also pass configurable hints to the arclgiviool, to guide HSM specific
decisions (e.g. select HPSS Class of Service...).

2 Quick start

2.1 Compilation and installation

It is advised to build the RPM on your target sgstéo ensure the compatibility with your
Lustre and database versions.

Requirements

First, make sure the following packages are irsdatin your machine:
* mysql-devel
« lustre API library (‘/usr/include/liblustreapi.hhd ‘/usr/lib/liblustreapi.a’)including
all Lustre-HSM specific functions. It is installed by standard Lustre rpm.

Compilation

Unzip and untar the sources:

> tar zxvf robinhood-2.1.2.tar.gz
> cd robinhood-2.1.2

Run the “configure” script to generate Makefiles:

- specify the --with-purpose=LUSTRE_HSM option for using it as Lustre-HSM
PolicyEngine;

- set the prefix of installation path (default isr/lecal) with ‘--prefix=<path>

> ./configure --with-purpose=LUSTRE_HSM --prefix=/u sr

Other ‘/configure ' options:
- On Lustre 2.0-alpha5/6: a fork() in liblustreapsuéts in ‘defunc’ robinhood process
when reading MDT changelogs. Use thenable-llapi-fork-support ' option to
avoid this.

Finally, build the RPM:

> make rpm

A ready-to-install RPM is generated in the ‘rpmsii&7<arch>’ directory. The RPM is
tagged with the lustre version it was built for.

The RPM includes:
- ‘rh-hsm’ and ‘rh-hsm-report’ binaries
- ‘rh-config’ script (configuration helper)
- Configuration templates
- /etc/init.d/robinhood-hsm script

NOTE: rpmbuild compatibility

Robinhood spec file (used for generating the RP3iitten for recent Linux distributions
(RH5 and later). If you have troubles generatindpinbood RPM (e.g. undefined
rpm macros), you can switch to the older speqfitevided in the distribution tarball):

> mv robinhood.old_spec.in robinhood.spec.in

> [configure
> make rpm

Robinhood service

Installing the rpm creates mbinhood-hsm ’ service. You can enable it like this:
> chkconfig robinhood-hsm on

This service starts one ‘rh-hsm’ instance for eawbnfiguration file it finds in
‘letc/robinhood.d/hsm’ directory. Thus, if you wantmanage several Lustre-HSM bindings,
create one configuration file for each of them.

NOTE: Suze Linux operating system

On SLES systems, the default dependency for bdwtdsding is on "mysqgl" service.
However, in many cases, it could be too early fartgg robinhood daemon, especially if the
filesystem it manages is not yet mounted. In sagecyou have to modify the following lines
in scripts/robinhood.init.sles.in before you ruryconfigure

Required-Start: <required service>

2.2 Database configuration

Before running Robinhood for the first time, you shereate its database and configure its
access rights.

* Install ‘mysql’ and ‘mysql-server’ packages on timachine where the database will
be located (it can be different from the machinerghRobinhood will run).

» Start the database engine :
service mysqld start

* Use the ‘rh-config’ command to check your configiola and create Robinhood
database:

check database requirements:
rh-config precheck_db

create the database:

rh-config create_db

Alternatively, if you want a better control of yodatabase configuration, you can perform the
following steps of your own (without using the ‘donfig’ script):

* As superuser (root): create the database (onel@gydtem) using thewysgladmin

command:
mysgladmin create <robinhood_db_name>

2.3

Connect to the database:
mysql <robinhood _db_name>

Execute the following commands in the MySQL session

o Create a database user and set its access righimétches all host names.

Your can replace it by the host where Robinhoodi lvélrunning):

GRANT USAGE ONrobinhood_db_name.* TO ‘robinhood’ @'%’

identified by ‘your_password’;

GRANT ALL PRIVILEGES ON robinhood_db_name.* TO ‘robinhood’@'%’ ;

o0 Refresh server access settings:
FLUSH PRIVILEGES ;

0 You can check user privileges by executing:
SHOW GRANTS FOR robinhood ;

For testing access to database, execute the fofpsommand on the host where

robinhood will be running :
mysql --user= robinhood --password= password --host= db_host
robinhood_db_name

If the command is successful, a SQL shell is stafdse, you will get a ‘permission
denied’ error.

Initially, the database schema is empty. Robinheiticautomatically create it the first
time it starts.

Lustre changelogs setup

Enabling Lustre changelogs is required for Lustf@vH

You can simply achieve this by running ‘rh-confagi the MDS:

> rh-config enable_chglogs

Alternatively, if you want to do it by yourself, germ the following actions on Lustre MDS
to use them:

Enable (at least) the following changelog recopesy HSM, CREAT, UNLNK,

TRUNC, TIME, SATTR:
Ictl set_param mdd.*.changelog_mask “HSM CREAT UNL NK TRUNC TIME
SATTR”

If your policy rules are massively based on filehgaor file names, and if files are
frequently renamed or moved from one directoryriother, you should also activate
the following events: RNMFM, RNMTO:

Ictl set_param mdd.*.changelog_mask “+ RNMFM +RNMTO’

- Changelogs consumers must be registered to Lusimahage log records transactions

properly. To do this, get a changelog reader ith wie ‘Ict’ command:
>|ctl

Ictl > device lustre-MDTO0000

Ictl > changelog_register

lustre-MDTO0O000: Registered changelog userid ‘cl1'

Remember this id, it will be needed for writing igEngine configuration file.

2.4 PolicyEngine (basic) configuration

Bootstrap

You can easily start your PolicyEngine configuratioom a template file:
- Two templates are installed in the ‘/etc/robinhadadsm/templates’ directory
(installed by the RPM): a basic example, and a rdetailed.
- You can also generate a documented example usrgtidmplate’ or -T’ option of

the Robinhood command:
rh-hsm -T template_file.conf

General, Log parameters

First, set the general options: the filesystemeaaranaged and log files (make sure the log
directory exists).

General

{
fs_path = "/mnt/lustre";

}

Log
log_file = "Ivar/log/robinhood/lustre_hsm Jlog";
report_file = "/var/log/robinhood/reports.lo a";
alert_file = "Ivar/log/robinhood/alerts.log";

}

Database parameters

Then, set database parameters : database hosasataame, database user, and a file that
contains password.

ListManager
{
MySQL
{
server = db_host;
db = robinhood_test;
user = robinhood;
password_file = /etc/robinhood.d/.dbpass;

I\ Make sure the password file cannot be readnyuser (use mode ‘600’ for example).

If you don’t care about security, you can direcpecify the password in the configuration
file, by specifying gpassword parameter instead:

Example: password = ‘passwOrd’;

Changelog parameters

Specify MDT name and the changelog reader id yawagste2.3 (Lustre changel ogs setup):

ChangelLog

MDT

{
mdt_name ="MDT0000";

reader_id = "cl1";

}

force_polling = ON;
}

About ‘force_polling = ON "> on Lustre 2.0-alpha5/6, changelog readers neegetform
active polling to get new events from MDT. So, bede lustre versions, you need to activate
polling with this option.

2.5 First run

The first time you run the policy engine, you néegberform a full filesystem scan to collect
information about previously existing entries. Bacarity, this scan is required even if your
filesystem is actually empty.

To perform this scan, start Robinhood using thdigamation file you just wrote. Specify the
“--scan” option and the “--once” option, so it wakit when the scan is completed.

rh-hsm —f your_config.conf --scan --once

Note 1: by default, robinhood uses the first corfilig it finds in the ‘/etc/robinhood.d/hsm’
directory. So, your config file is the only one this directory, you can omit thef"
parameter:

rh-hsm --scan --once

Note 2: to get traces inline, you can change ldg With the ‘—L’ option (this overrides
‘log_file’ parameter in configuration file). Spetialues ‘stderr’ and ‘stdout’ can be used:

rh-hsm --scan -—once —L stderr

You get something like this:

2009/07/17 13:49:06: FS Scan | Starting scan of /mn t/lustre

2009/07/17 13:49:06: FS Scan | Full scan of /mnt/lu stre completed,
7130 entries found. Duration = 0.12s
2009/07/17 13:49:06: FS Scan | File list of /mnt/lu stre has been updated

2009/07/17 13:49:06: Main | All tasks done! Exiting

Note 3: if your filesystem is accessed during g#uan, you should handle Changelog records
at the same time, so the PolicyEngine databasdwillept up-to-date.

Unlike the scan operation, changelog processing breidone continuously (not only once).
So we start it as a separated command. Additionaltycan specify the ‘--detach’ option to
execute it in background.

rh-hsm —handle-events --detach

2.6 Minimal migration policy

With the basic configuration we wrote, the Policgifre is only able to process changelogs
and update its database.

Let's now add a basic migration policy to the cgafiation file:
migration_policies

policy default
{

condition

last_mod > 6h

}
}
}

This definition only consists of a special ‘defapivlicy that applies to all files. It specifies a
condition for archiving files. In this example, weant to migrate “dirty” files that have not be
modified for 6 hours.

You can also specify the following migration paraens: number of threads for performing
migration queries, migration runtime interval, ahd maximum number (and/or volume) of
copies to be requested at each pass.

Migration_parameters

{
nb_threads_migration = 4;
runtime_interval = 15min;
max_migration_count = 10000;
max_migration_volume = 10TB;

}

To test this migration policy inline, let’s runahce with the ‘--dry-run’ option, so the
PolicyEngine doesn'’t really request file copy:

rh-hsm —migrate —once —dry-run —L stderr

2.7 Minimal purge policy

The basic purge policy is very similar to the migma policy. It consists of a ‘default’ case,
with a condition for releasing files in Lustre @fthey have successfully been archived).
Note that files are not released immediately whesy tmatch this condition: this is just a
minimal condition for being included to the LRUtli®r purge. When disk space is needed,
files are then purged in the order of this list.

purge_policies

policy default
{

condition

{

last_access > 1d

}
}
}

In this example, we never want to release fileessed during the last hour.
All other archived files can be considered in puc&eJ list.

You also need to specify a condition for triggerangurge, and for stopping it. This is done
with a ‘purge_trigger’. The most common (and segtrigger is on OST usage:

purge_trigger

{
trigger_on = OST _usage;
high_watermark_pct = 85% ;
low_watermark_pct = 80% ;
check_interval =5min;

}

In this trigger, OST usage is checked every 5 nesuA purge operation is performed on an
OST if its usage exceeds 85%. Files on this OSThee released until the OST usage
reaches the low watermark (80% in this example).

Then, you can test this purge policy by executing:
rh-hsm —purge —once —dry-run —L stderr

2.8 Using file classes

Robinhood makes it possible to apply different raigm/purge policies to files, depending on
their properties (path, posix attributes, ...). Ttés be done by defining file classes that will
be addressed in policies.

In this example, we define 3 classes and applgwfit policies to them:
- We never want “*.log” files that owns to ‘root’ tue released;
- We want files in directory /tmp/A to stay longer disk than other directories.

To do this, we define those classes in the ‘filgssection of the configuration file.
We associate a custom name to each FileClass,amdgdefinition:

Filesets

log files owned by root
FileClass root_log_files

definition

{
owner == root
and
name == “*.|og”

}

files in filesystem tree /fs/A
FileClass A_files

{
definition
{
tree == “/fs/A”
}
}

}

Then, those class names can be used in policies:
- entries can be white-listed using a ‘ignore_filsslastatement;
- they can be targeted in a policy, using a ‘targleiclass’ directive.

Purge_Policies

{

don't purge log files of ‘root’
ignore_fileclass = root _log file;

keep files in /fs/A at least 12h after their las t access time
Policy purge_A files

target_fileclass = A files;
condition

{
}

last_access > 12h

}

‘default’ policy applies to all other files
(files not in /fs/A and that don’t own to root)
Policy def aul t

{

condition

{
}

last_access > 1h

- agiven FileClass cannot be targeted simultanednsbBeveral purge policies;

- policies are matched in the order they appear ifigoration file. In particular, if 2
policy targets overlap, the first matching policylWwe considered;

- For ignoring entries, you can directly specify andition in the ‘purge_policies’
section, using a ‘ignore’ block:

Purge_Policies

{

Ignore

{

owner == root
and
name == “* log”

}

Note: this example is for purge policies, but #tsscan also be used for migration policies.

2.9 Minimal ‘hsm_remove’ policy

When files are definitively removed from Lustre,uymay want to clean the related data in

the HSM, to free tape space. However, it can berésting to defer the removal in the HSM,

to prevent from accidental ‘rm’. This is the purpad the ‘hsm_remove’ policy.

It only consists of 2 parameters:

- no_hsm_remove if TRUE, this disables object removal in the Hbbjects are never
cleaned in the HSM when they are removed from kejstr

- deferred_remove_delay delay for deleting an object in the HSM afterhiis been
removed from Lustre.

hsm_remove_policy

{
}

You can also specify the following parameters: nemlof threads for performing ‘remove’
requests, runtime interval, and the maximum nurobeequests per pass:

deferred_remove_delay = 7d;

hsm_remove_parameters

{

runtime_interval = 5min;
nb_threads rm = 4;
max_rm_count = 10000;

}

To test this policy inline, run it once with thedry-run’ option, so the PolicyEngine doesn’t
really request file removal:

rh-hsm —hsm-remove —once —-dry-run —L stderr

2.10 Running in production

In previous steps, we executed each feature indiepdélly (changelog processing, migration,
purge, removal...). In production, you can run alltbém in the same process without
specifying any feature on command line (use ‘-cl@tar ‘-d’ option to run the process in
background):

rh-hsm —d

You can also combine several features:

rh-hsm —d —migrate —purge

3 Configuration reference

In the previous sections, we got familiar with mégatures of Robinhood PolicyEngine.
This section now describes in details all paransedérconfiguration files.

3.1 Syntax

General structure

The configuration file consists of several blocks.

A block can contain:
- a set of key/value peers (separated by semi-splon
- sub-blocks
- a Boolean expression.

In some cases, blocks have an identifier.

BLOCK_1 bloc_id
{

Key = value;
Key = value(optl, opt2);
Key = value;
SUBBLOCK1 {
Key=value;
}
}

BLOCK_2
{

(Key > value)
and
(key == value or key != value)

}
Types

Parameter values can be:

» A string delimited by single or double quotes (‘ or “).

* A Booleanconstant. All the following values are acceptebgcis not significant):
TRUE, FALSE, YES, NO, 0, 1, ENABLED, DISABLED.

* A numerical value (decimal representation).

* A duration, i.e. a numerical value followed by one of thos#ises: ‘w’ for weeks,
‘d’ for days, ‘h’ for hours, ‘min’ for minutes, ‘sfor seconds. E.g.: 1s; 1min; 3h; ...
NB: if you do not specify a suffix, the durationimgerpreted as seconds.

E.g.: 60 will be interpreted at 60s, i.e.1 min.

* A size i.e. a numerical value followed by one of thosHises: PB for petabytes, TB
for terabytes, GB for gigabytes, MB for megabyt€B,for kilobytes. No suffix is
needed for bytes.

* A percentage float value terminated by ‘%’. E.g.: 87.5%

Boolean expressions
Some blocks of configuration file are expectededmolean expressions on file attributes:

* AND, OR and NOT can be used in Boolean expressions.

» Brackets can be used for specifying sub-expressions

» Conditions on attributes are specified with thédfeing syntax:
<attribute> <comparator> <value>.

* Allowed comparators are ‘==", ‘<>’ or ‘I=", >’ =’ ‘< <=,

The following properties can be used in Boolearresgions:

» tree: entry is under a given path. Shell-like wildcaads allowed.
E.g: tree == “/fs/subdir/*/dirl” matches entry ‘Esibdir/foo/dirl/dir2/foo”.

» fullpath: entry exactly matches the path. Shell-like wildisaare allowed.
E.g: fullpath == “/fs/*/foo*” matches entry “/fs/fir/foo123” but it doesn’t match
“/fs/subdir/foo4/file”.

* name: entry name matches the given regular expression.
E.g: name == “*.log” matches entry “/fs/dir/foo/alng”.

* type: entry has the given typéditectory, file, symlink, chr, blk, fifo or socK).
E.g: type == “symlink”.

* owner: entry has the given owner (name expected).
E.g: owner == “root”.

* group: entry owns to the given group (name expected).

» size:entry has the specified size. You can use suflikeXB, MB, GB...
E.g: size >= 100MB matches file whose size equaix1024x1024 bytes or more.

» last_accessconditionbased on the last access time of a file (for readmwriting).
This is the difference between current time and (ataxe, mtime). The value can be
suffixed by ‘sec’, ‘min’, *hour’, ‘day’, ‘week’...

E.g: last_access < 1h matches files that have t@aehor written within the last hour.

* last_mod: conditionbased on the last modification time to a file. Tisithe difference
between current time and mtime.
E.g: last_mod > 1d matches files that have not lpeedified for more than a day.

» ost_pool:condition about the OST pool name where the fils er@ated. Wildcarded
expressions are allowed.
E.g. ost_pool == “pool*”.

* Xxattr. xxx.yyy: test the value of a user-defined extended at&ibiithe file.
E.g: xattr.user.tag_no_purge == “1"
0 xattr values are interpreted as text string;

0 regular expressions can be used to match xattesalu
E.g: xattr.user.foo == "abc.[1-5].*" matches filauing xattr user.foo =
"abc.2.xyz"

o if an extended attribute is not set for a filanatches empty string.
Eg. xattr.user.foo == " xattr 'user.foo' is not defined

» external_command[not yet implemented]: custom script for testinguif entry
matches. Must return O if the entry matches, amdhvalue else.
Note: special parameters can be used for defimagommand (see sectigixX for
more details).
E.g: external_command(“/usr/bin/do_match {fullgéth

Example of Boolean expression:

IGNORE {
(name == "*log” and size < 15GB))
or (owner == “root” and last_access < 2d)
or not tree == “/fs/dir”

}

Comments

The ‘# and ‘/I' signs indicate the beginning oE@amment (except if there are in a quoted
string). A comment ends at the end of the line.

E.Q.

this is only a comment line

X = 32 ; # a comment can also be placed after a def inition line

Includes

A configuration file can be included from anothie fising the %include ’ directive. Both
relative and absolute paths can be used.
E.Q.

% ncl ude “subdir/common.conf”
Configuration blocks

The main blocks in a configuration file are:

* General (mandatory): main parameters.

* Log: logging parameters (log files, log level...).

» Filesets definition of file classes

* Purge_Policies defines purge policies.

» Purge _Trigger: specifies conditions for starting purges.

* Purge_Parameters general options for purge.

* Migration_Policies: specifies conditions for archiving files

* Migration_Parameters: options about migrations.

» ListManager (mandatory): database access configuration.

* FS_Scanoptions about scanning the filesystem.

* EntryProcessor. parameters for entry processing pipeline (forsE& and changelog
processing).

Those blocks are described in the following sestion

3.2 Configuration template and default parameters

Template file

To easily create a configuration file, you can gateea documented template using the
--template option of robinhood, and edit this file to set tAppropriate values for your
system:

rh-hsm --template=<template file>
Default configuration values

To display the default values for configurationgraeters, use thelefaults ~ option:

rh-hsm --defaults

3.3 General parameters

General parameters are specified in a configurdtiock whose name isSeneral.
The following parameters can be specified in thisk

» fs_path (string, mandatory): the path of the file systenbé managed. This must be
an absolute path. This parameter can be overridgénfs-path " parameter on
command line.

E.qg.:fs_path = “/tmp_fs";

* lock_file (string): robinhood suspends its activity whers tlile exists.
E.g.:lock_file = “/var/lock/robinhood.lock”;

» stay _in_fs(Boolean): if this parameter is TRUE, robinhood altsethat the entries it
handles are in the same devicefagpath, which prevents from traversing mount
points.

E.g.:stay_in_fs = TRUE;

» check_mounted(Boolean): if this parameter is TRUE, robinhoodaksethat the
filesystem specified bfs_path is mounted.
E.g.:check_mounted = TRUE;

3.4 Logging parameters

Logging parameters are specified in a configuratilmeck whose name i$.6g’.

The following parameters can be specified in thisk

» debug_level(string): verbosity level of logs. This parametande overridden by
“--log-level " or “-I " parameter on command line.

Allowed values are :
- FULL: highest level of verbosity. Trace everything.
- DEBUG: trace information for debugging.
- VERB: high level of traces (but usable in produajio
- EVENT: standard production log level.
- MAJOR: only trace major events.
- CRIT: only trace critical events.
E.g.:debug_level = VERB;
* log_file (string): file where logs are written. This pardetecan be overridden by
“--log-file ” parameter on command line.
E.Q.:log_file = “/var/logs/robinhood/robinhood.log”;
* report_file (string): file where migration and purge operatians reported
E.qg.:report_file = “/var/logs/robinhood/purge_report.log

Two methods can be used for raising alerts: seraimgil, writing to a file, or both.
This is specified by the following parameters:

« alert_file (string): if this parameter is set, alerts arettemi to the specified file.
E.g.:alert_file = “/var/logs/robinhood/alerts.log”;

« alert_mail (string): if this parameter is set, mail alerts aent to the specified
recipient.
E.g.:alert_mail = “admin@localdomain”;

3.5 File class definition

You may need to apply different migration/purgeigek depending on file properties. To do
this, you can define file classes.

A file class is defined by a ‘FileClass’ block. Aile class definitions are grouped in the
‘Filesets’ block of the configuration file.

Each file class has an identifier (used for addngss in policies) and a definition (a

condition for entries to be in this file class).

You can also specifgnigration hints for each file class: this information is passethi®
copytool for guiding HSM-specific decisions. If gsal “migration_hints” are specified, they
are appended using coma as delimiter. See sektldnfor more detalils.

E.g: migration_hints = “fileclass={fileclass}”;

Lustre-HSM can handle several storage backendstifiéel by a unique &rchive number”.
You can assign a target backend to each fileclassifying “archive_num = <n>;”".

File classes definition overview:

Filesets {
FileClass my_class_1{
Definition {
tree == “/fs/dir_A”
and
owner == root

}
migration_hints = “cos=18";
archive_num = 2;

}

FileClass my_class_2

{
}
}

3.6 Purge policies

Normally, files are purged in the order of thestlaccess time (LRU list). You can however
specify conditions to allow/avoid entries to begad, depending on their file class, and file
properties.

To define purge policies, you can specify:
» Sets of entries that must never be purged (ignored)
» Purge policies to be applied to file classes.
* A default purge policy for entries that don’t mataty file class.

In configuration file, all those parameters areuged in a Purge_Policie$ block that
consists of:
- ‘lgnore’ sub-blocks: Boolean expressions to “white-listé$ystem entries depending
on their properties.
E.g.: Ignore { size == 0 or type == “symlink” }
‘Ignore_fileclass: “white-list” all entries of a fileclass.
E.g.: Ignore_FileClass = my_class_1;
- 'Policy sub-blocks: specify conditions for purging ensrif file classes.
A policy has a custom name, one or several taigetisses, and a condition for
purging files.
E.Q:

Policy purge_classes_2and3

target_fileclass = class_2;
target_fileclass = class_3;

condition

{
}

Last_access > 1h

}

- The default policy applies to files that don’t matany previous file class or ‘ignore’
directive. It is a special ‘Policy’ block whose nams ‘default’ and with no
target_fileclass.

E.g:
{Policy default

condition

{
}

last_access > 30min

}

As a summary, the ‘purge_policies’ block looks ltkés:

purge_policies {
don't purge entries owned by root

3.7

Ignore { owner == “root” }

don't purge files of classes ‘class_xxx’ and ‘cl
Ignore_FileClass = class_xxx ;
Ignore_FileClass = class_yyy ;

purge policy for files of ‘my_class1’ and ‘my_cl

ass_yyy’

ass2’

policy my_purge_policyl
{

target_fileclass = my_classi;
target_fileclass = my_class?2;
condition { last_access > 1h and last_mod > 2h }

}

#”purge policy for all other files
policy default

{
}

condition { last_access > 10min }

Purge triggers

Triggers describe conditions for starting/stoppiugges. They are defined by ‘purge_trigger’
blocks. Each trigger consists of:

The type of condition (on global filesystem usage OST usage, on volume used by a
user or a group...);

A purge start condition ;

A purge target condition ;

An interval for checking start condition.

Several trigger types can be used:

Type of condition

The type of condition is specified byrigger_on” parameter.
Possible values are:

global_usage:purge start/stop condition is based on the spased in the whole
filesystem (based odf return). All entries in filesystem are considered $uch a
purge.

OST_usagepurge start/stop condition is based on the spaeg g each OST (based
onlfsdf). Only files stored in an OST are considered tmhsa purge.
user_usage[(userl, user2...)Jpurge start/stop condition is based on the spaed us
by a user (kind of quota). Only files that own tasger are considered for such a purge.
If it is used with no arguments, all users will lafected by this policy.
A list of users can also be specified for restnigtthe policy to a given set of users
(coma-separated list of users between bracketédt-fully implemented in robinhood
2.1.1].

group_usage[(grpl, grp2...)]:purge start/stop condition is based on the spaed us
by a group (kind of quota). Only files that ownaa@roup are considered for purge. If
it is used with no arguments, all groups will befeefed by this policy.
A list of groups can also be specified for resimigtthe policy to a given set of groups
(coma-separated list of groups between bracket$iNot fully implemented in
robinhood 2.1.1].

» external_command(“<cmd line>"): purge start/stop condition is based on an
external command. Command output must have a spsgiitax, to specify the kind
and the amount of files to be purged. [Not impletadnn Robinhood 2.1.2].

Start condition

This is mandatory for all types of conditions, excéxternal_command”.
A purge start condition can be specified by two svgercentage or volume.
* high_watermark_pct (percentage)specifies a percentage of space used over which a
purge is launched.
* high_watermark_vol (size): specifies a volume of space used over which a pisrge
launched. The value for this parameter can bexadfby KB, MB, TB...

Stop condition

This is mandatory for all types of conditions, gxcéxternal_command”.
A purge stop condition can also be specified by ways: percentage or volume.
* low_watermark_pct: specifies a percentage of space used under whpahga stops.
* low_watermark_vol: specifies a volume of space used under which aepsrgps.
The value for this parameter can be suffixed by KBB, TB... (the value is
interpreted as bytes if no suffix is specified).

Runtime interval

The time interval for checking a condition is sgtthe ‘check_interval’ parameter. The
value for this parameter can be suffixed by ‘s&uin’, ‘hour’, ‘day’, ‘week’, ‘year’... (the
value is interpreted as seconds if no suffix iHjssl).

Examples

Check ‘df’ every 5 minutes, start a purge if spased > 85% of filesystem and stop purging
when space used reaches 84.5%:

Purge_Trigger

trigger_on = global_usage ;
high_watermark_pct = 85% ;
low_water_mark_pct = 84.5% ;
check_interval = 5min ;

}

Check OST usage every 5 minutes, start a purgéesfdn an OST if it space used is over
90% and stop purging when space used on the OBTtde85%:

Purge_Trigger
{

trigger_on = OST_usage ;
high_watermark_pct = 90% ;
low_water_mark_pct = 85% ;
check_interval = 5min ;

}

Daily check the space used by each user. If otleefi uses more than 1TB, release its files
until it uses less than 800GB:

Purge_Trigger
{

trigger_on = user_usage ;
high_watermark_vol = 1TB ;
low_water_mark_vol = 800GB ;
check_interval = 1day ;

3.8 Purge parameters

Purge parameters are specified in a ‘purge_parashéteck.
The following options can be set:

* nb_threads_purge(integer): this determines the number of purgeatens that can
be performed in parallel.
E.Q.: nb_threads_purge =8 ;

» post_purge_df latency(duration)immediately after purging datdf andost df may
return a wrong value, especially if freeing diskepis asynchronous. So, it is
necessary to wait for a while before issuing a déar ost df command after a purge.
This duration is set by this parameter.

E.Q.: post_purge_df latency = 1min ;

* purge_queue_sizéinteger): this advanced parameter is for leverggurge thread
load.

» db_result_size_max(integer): this impacts memory usage of MySQL seraed
Robinhood daemon. The higher it is, the more thenarg usage, but fewer DB
requests are performed.

3.9 Migration policies

Normally, files are archived in the order of thist modification time. You can however
specify conditions to allow/avoid entries to behawed, depending on their file class, and file
properties.

To define migration policies, you can specify:
» Sets of entries that must never be copied (ignored)
* Migration policies to be applied to file classes.
» A default migration policy for entries that don’tatch any file class.

In configuration file, all those parameters areugreed in a Migration_Policies’ block that
consists of:
‘Ignore’ sub-blocks: Boolean expressions to “white-ligte$ystem entries depending
on their properties.
E.g.: Ignore { size == 0 or type == “symlink” }
‘Ignore_fileclass: “white-list” all entries of a fileclass.
E.g.: Ignore_FileClass = my_class_1;
- ‘Policy sub-blocks: specify conditions for archiving eeg of file classes.
A policy has a custom name, one or several targetlasses, and a condition for
archiving files.
- You can specify migration_hints” to guide copytool decisions. If a file class has
“migration_hints”, they are appended to policy “magon_hints” (see sectichi11).

- You can indicate andrchive_num’, which will be the target storage backend used
for file migration. If archive_num is specified loth fileclass definition and policy
definition, policy archive_num overrides fileclamshive_num.

Example of policy:

Policy archive_classes_2and3 {
target_fileclass = class_2;
target_fileclass = class_3;

condition

{

Last_mod > 1h

migration_hints = “cos=1,PE_policy={policy}";
archive_num = 1;

}

- The default policy applies to files that don’t matany previous file class or ‘ignore’
directive. It is a special ‘Policy’ block whose nams ‘default’ and with no
target_fileclass.

E.Q:
Policy default
{ condition
{ last_mod > 30min
} ;rchive_num =3;

As a summary, the ‘migration_policies’ block lodke this:

migration_policies

don't archive logs
Ignore { tree == “/fs/logs” and name="*.log" }

don't archive files of classes ‘class_xxx’ and * class_yyy’'
Ignore_FileClass = class_xxx ;
Ignore_FileClass = class_yyy ;

migration policy for files of ‘my_class1l’ and ‘m y_class2’
policy my_migr_policyl
{

target_fileclass = my_classi;

target_fileclass = my_class2;

condition { last_mod > 2h or last_copyout > 1d }
archive_num =1,

}

#”migration policy for all other files
policy default

{
condition { last_mod > 6h or last_copyout > 7d }
archive_num = 2;

3.10 Migration parameters

Migration parameters are specified in a ‘migratijparameters’ block.
The following options can be specified:

* runtime_interval (duration): interval for checking migration pobsi.
E.g.: runtime_interval = 10min ;

* max_migration_count (integer): maximum number of migration requestt ttan be
performed per pass.
E.g.: max_migration_coust1000 ;

* max_migration_volume (size): maximum volume of migration requests ttaat be
performed per pass.
E.g.: max_migration_volumel1TB ;

* nb_threads_migration (integer): this determines the number of ‘archiegjuests
that can be performed in parallel.
E.g.: nb_threads_migration = 8 ;

» backup_new files(Boolean): specifies if newly created files with data must be
archived.

» check_copy_status_on_startup(Boolean): indicates if previously running copies
must be checked when the PolicyEngine restarts.

* migration_queue_sizginteger): this advanced parameter is for levemggmgration
thread load.

» db_result_size_max(integer): this impacts memory usage of MySQL seraed
Robinhood daemon. The higher it is, the more thenarg usage, but fewer DB
requests are performed.

3.11 About migration hints

Migration hints can be used to pass specific infdram to the transfer tool or to the storage
backend.

They can be specified in a file class definitionroa migration policy definition. If both are
specified, fileclass hints and policy hints areepged and separated by a coma.

The following special variables can be used in atign_hints:
- “{policy} ": stands for the policy name
- “Ifileclass} ": stands for the file class name
- “{path} ": stands for full posix path of the entry
- “{name} ": stands for the file name
- “{ost_pool} ": stands for the pool name where the file is siqieany).

Example:

Filesets {
FileClass my_class_1{
Definition {
tree == “/fs/dir_A"
migration_hints = “cos=18";
migration_hints = “class={fileclass}";
}
}

migration_policies

policy my_migr_policyl
{

target_fileclass = my_class_1;
condition { last_mod > 2h or last_copyout > 1d }

migration_hints = “pol={policy}";
migration_hints = “fullpath="{path}";

}
For a file ‘frd/dir_aA/dir.1/dir.2/file.x ", the following hints string will be passed to tbepytool:

cos=18,class=my_class_1,pol=my_migr_policy1,fullpat h="/fd/dir_A/dir.1/dir.2/file.x’

3.12 HSM_remove policy

When files are definitively removed from Lustreistipolicy defines when the related data is
cleaned in the HSM.
This is specified by the following parameters, gred in a hsm_remove_policy block:

- no_hsm_remove(Boolean): if TRUE, this disables object removaltive HSM (objects
are never cleaned in the HSM when they are rembroed Lustre).

- deferred_remove_delay(duration): delay before deleting an object in HeM when it
has been removed from Lustre.

3.13 HSM_remove parameters

‘HSM_remove’ parameters are specified in a ‘hsm aeen parameters’ block.
The following options can be specified:

* runtime_interval (duration): interval for checking files to be reved.
E.g.: runtime_interval = 10min ;

« max_rm_count (integer): maximum number of requests that casdo per pass.
E.g.: max_rm_count = 1000 ;

* nb_threads_rm (integer): this determines the number of ‘remaegjuests that can be
performed in parallel.
E.g.: nb_threads_rm=8;

* rm_qgueue_sizginteger): this advanced parameter is for leverggfimead load.

3.14 Database parameters

The ‘ListManager’ block is the configuration forassing the database.

ListManager parameters:

« commit_behavior. this is the method for committing informationdatabase.
The following values are allowed:

- autocommit: weak transactions. In this mode, each operatiomatabase is
committed immediately, and multiple operations be same entry are not
grouped in transactions (more efficient, but dasabaconsistencies may
appear).

- transaction: group operations in transactions (best consigterlower
performance).

- periodic(<nbr_transactions>) operations are packed in large transactions
before they are committed. ‘Commit’ is done ewrijransactions. This method
is more efficient for in-file databases like SQLifEhis causes no database
inconsistency, but more operations are lost in cAsecrash.

E.Qg: commit_behavior = periodic(1000);

* connect_retry_interval_min, connect_retry_interval_max(durations):
‘connect_retry_interval_min’ is the time (in secshtb wait before re-establishing a
lost connection to database. If reconnection ftiis, time is doubled at each retry,
until ‘connect_retry _interval_max’.

E.Qg: connect_retry_interval_min = 1;
connect_retry_interval_max = 30;

MySQL specific configuration is set in BIySQL’ sub-block, with the following parameters:

» server. machine where MySQL server is running. Both senane and IP address

can be specified.
E.g.:server = “mydbhost.localnetwork.net”;

» db (string, mandatory): name of the database.
E.g.:db = “robinhood_db”;

e user (string): name of the database user.
E.Q.:user = “robinhood”;

» passwordor password_file(string, mandatory): there are two methods for gpeg
the password for connecting to the database, dapgenfithe security level you want.
You can directly write it in the configuration fjlby setting thepassword
parameter. You can also write the password intandidfile (with more restrictive
rights) and give the path to this file by settipgssword_filé parameter. This makes
it possible to have different access rights forfigpfile and password file.
E.g.:password_file = “/etc/robinhood/.dbpass”;

3.15 Filesystem scan parameters

Parameters for scanning the filesystem are séeirFS_Scanblock.
It can contain the following parameters:

* min_scan_interval max_scan_interval(durations): those parameters are usefully on
systems on which frequent scans are needed. FaretldSM purpose, you should
only use the scan feature with the ‘--once’ opt®myou can ignore those parameters.

- nb_threads_scan(integer): number of threads used for scanningfilleeystem in
parallel.

» scan_retry delay(duration): if a scan fails, this is the delaydrefstarting another.

« scan_op_timeout(duration): this specifies the timeout for reafigbtattr operations.

If a thread is stuck in a filesystem operation dgrthis time, it is cancelled.

- spooler_check_interval(duration): interval for testing FS scans, deafliand hangs.

« nb_prealloc_tasks(integer): number of pre-allocated task struct(aglvanced
memory parameter).

3.16 Entry processor pipeline options

For handling Changelog records, or scanning tlesyigtem, entries are handled by a pool of
threads, with a pipeline model.
Options for this pipeline are set inlantryProcessor block, with the following parameters:

* nb_threads(integer): number of threads for performing pipeltasks.

* max_pending_operations (integer): this parameter limits the number of gieg
operations in the pipeline, so this prevents fraemg too much memory. When the
number of queued entries reaches this value, wedgnrily stop reading changelog
records to keep the pending operation count bettoswalue.

Pipeline processing is divided in several stageas.fdossible to limit the number of threads
working simultaneously on a given stage by setangstage_name>_threads_max’
parameter. Thus, the following parameters can be se

» STAGE_GET_FID_threads_max (integer): this limits the number of threads that
simultaneously perform “path2fid” operations, dgyimfilesystem scan.

» STAGE_CHECK_EXIST_threads_max (integer): this limits the number of threads
that simultaneously check if an entry already existdatabase.

» STAGE_GET_INFO_threads_max(integer): this limits the number of threads that
simultaneously retrieve extra information aboutdiistem entries (stat, get stripe, get
HSM state flags...).

» STAGE_HSM_REMOVE_threads_max(integer): this limits the number of threads
that simultaneously send HSM remove requests todamator [temporary mechanism
that will be removed in next Robinhood versions].

» STAGE_REPORTING threads_max(integer) : this limits the number of threads
that simultaneously check and raise alerts abtagystem entries [not implemented in
v2.1.2].

» STAGE_DB_APPLY_threads_max(integer) : this limits the number of threads that
simultaneously insert/upate entries in the database

E.g.: for limiting the number of simultaneous openas of retrieving entries info :
STAGE_GET_INFO_threads_max = 2;

Alerts [not implemented in v2.1.2]

Oneof the taskof the Entry Processor is to check alert rulesramgk alerts. For defining an
alert, simply write an Alert’ sub-block with a Boolean expression that describee
condition for raising an alert (see secti@rnl for more details about writing Boolean
expressions on file attributes).

Example: raise an alert if a file is larger thaOG®B (except for user ‘fo0’):

Alert

type == file
and
size > 100GB
and
owner != ‘foo’

4 The ‘rh-hsm’ command

4.1 Execution modes

Automatic mode

The ‘rh-hsm’ command runs the PolicyEngine daemdnich automatically applies policies
according to its configuration.

By default, it makes all PolicyEngine tasks inragée process:
* Processing changelog records;
* Applying migration policies;
* Monitoring space usage and applying purge polisiesn needed.
* Remove copies in HSM if files have been deleteldustre.

Basically, the following command starts the Poliogihe as a daemon, using the first

configuration file in /etc/robinhood.d/hsm "
rh-hsm -d

It can also be split in several instances, runmimgseveral nodes, to get a better load
balancing. This is done by using the following ops:

» --handle-events: only process changelogs;

* --migrate: only apply migration policies;

* --purge: only monitor space usage and apply puogeies.

* --hsm-remove: only remove orphan copies in the HSM.

These options can also be used together.
E.Q:

rh-hsm --migrate --purge

Manual actions

You can also use the ‘rh-hsm’ command to perforstam actions manually.
Normally, manual actions are started with the ‘e@roption, so the program exists when it is
done. Otherwise, it will loop on performing theiant until the program is killed.

Custom manual actions:

» Before a risky operation on your Lustre filesystgy may want to backup all
modified files immediately, whatever the policy ditions. This is done by executing:
rh-hsm —sync
(which is equivalent te-migrate --once --ignore-policies).

* Release files in a given OST unitil its space usapelow the specified percentage:
--purge-ost=<ost_index>,<usage_pct_target>
E.g.: released file in OST #2 until its space usagasder 80.5%
--purge-ost=2,80.5

* Release files in the entire filesystem until itasp usage is below the specified
percentage:
--purge-fs=<usage_pct_target>
E.g.: release files until filesystem usage is bel®o
--purge-fs=75

* Archive files in a given OST, according to migratipolicies:
--migrate-ost=<ost_index>

» Archive files of a given user, according to migoatipolicies:
--migrate-user:<user_name>

* Archive files of a given group, according to migpatpolicies:
--migrate-group=<group_name>

You can also force migration/purge of all eligildetries, ignoring policy conditions, using
the *--ignore-policies’ option:

* For migration actions (--migrate, --migrate-osinigrate-user, --migrate-group) , this
option results in archiving all modified files, evé they are currently being modified.
I\ This may generate a huge amount of copy opmrati

* For purge actions (--purge, --purge-fs, --purge-thg¥ option results is releasing the
data for all files archived in the HSM and not ni@di in Lustre.
I\ If the target space usage is low, this may ltaaueleasing files that are currently
opened.

4.2 Command line options

Several command line options have been describdgiprevious section.
Here is the list of all available options:

Usage: rh-hsm [options]

Action switches:
-S, --scan
Scan filesystem namespace.
-P, --purge
Release file data according to purge polici es.
-M --migrate
Copy "dirty" entries to HSM.
-H, --handl e-events
Handle events from MDT ChangelLog.
-R, --hsmrenove
Perform deferred removals in the HSM.
Default is: --handle-events --purge —migrate — -hsm-remove

Manual m gration actions:
-S, --sync
Immediately migrate all modified files, igno ring policy conditions.
It is equivalent to "--migrate --ignore-policies --once".

--m grat e- ost =ost_index

Apply migration policies to files on the gi
--m grat e- user =user_name

Apply migration policies to files owned by
--m grat e- gr oup=grp_name

Apply migration policies to files of group

Manual purge actions:
- - pur ge-ost =ost_index ,target usage pct
Purge files on the OST specified by ost_ind
specified space usage.
- - pur ge- f s=target_usage_pct
Purge files until the filesystem usage reac

Behavi or options:
--dry-run
Only report actions that would be performed (rmdir,
without really doing them.
-i, --ignore-policies
Force purging all eligible files, ignoring

-O, --once
Perform only one pass of the specified acti
-d, --detach

Daemonize the process (detach prom parent p

Config file options:

-f file , --config-fil e=file
Specifies path to configuration file.
-Tfile , --tenpl ate=file

Write a configuration file template to the
-D, --defaults
Display default configuration values.

Fi |l esystem options:
- F path - - f s- pat h=path
Force the path of the filesystem to be mana
(overrides configuration value).
-t type , --fs-type=type
Force the type of filesystem to be managed
(overrides configuration value).

Log opti ons:
- L logfile , --1og-fil e=logfile
Force the path to the log file (overrides ¢
Special values “stdout” and “stderr” can be used
-1 level , --1og-Ievel =level
Force the log verbosity level (overrides co
Allowed values: CRIT, MAJOR, EVENT, VERB, D

M scel | aneous options:

-h, --help

Display a short help about command line opt
-V, --version

Display version info

- p pidfile , --pid-file=pidfile

Pid file (used for service management).

ven OST ost_index.
user_name.

grp_name.

ex until it reaches the

hes the specified value.

purge)

policy conditions.
on and exit.

rocess).

specified file.

ged

onfiguration value).

nfiguration value).
EBUG, FULL.

ions.

4.3 Signals

Robinhood traps the following signals:

- SIGTERM (kill <pid>) and SIGINT: perform a cleanwtown;
- SIGHUP (kill -HUP <pid>): reload dynamic paramet&mn config file.

5 Reporting tool

5.1 Overview

Robinhood’s database content is very useful fotdng detailed reports about filesystem.
For example, you can get the min/max/average side files, proportion of
archived/released/dirty files, the space used ¢iyen user, etc...

Those statistics can be retrieved using Robinhepdrting commandh-hsm-report.

5.2 Command line

Usage: rh-hsm-report [options]

Stats swi tches:
-a, --activity
Display stats about daemon’s activity.
-i, --fsinfo
Display filesystem content statistics.
-uuser , --userinfo[=user]
Display user statistics. Use optional param eter user
for retrieving stats about a single user.
-ggroup , --groupinfo[=group]
Display group statistics. Use optional para meter group
for retrieving stats about a single group.
-scount , --topsize[=count]
Display largest files. Optional argument in dicates the number
of files to be returned (default: 20).
-pcount , --toppurge[=count]
Display oldest entries eligible for purge. Optional argument
indicates the number of entries to be returned (d efault: 20).
-Ucount , --topusers[=count]
Display largest disk space consumers. Optional argu ment indicate
the number of users to be returned (default: 20).
-R, --deferred-rm
Display all files to be removed from HSM.
-D, --dunp-all
List all filesystem entries.
- -dunp- user user
List all entries for the given user.
- - dunp- gr oup group
List all entries for the given group.
- -dunp- ost ost_index
List all entries on the given OST.
- - dunp- st at us status
List all entries with the given status (new, modified|dirty,
retrieving|restoring, archiving, synchro, release d,..).

Filter options:
The following filters can be speficied for reports:

-Ppath, --filter-path=path
Display the report only for objects in the given path.

Config file options:
-f file , --config-fil e=file
Specifies path to configuration file.

Qut put format options:
-c, --Csv
Output stats in a csv-like format for parsi ng

M scel | aneous options:

-1 level , --log-Ievel =level

Force the log verbosity level (overrides co nfiguration value).
Allowed values: CRIT, MAJOR, EVENT, VERB, D EBUG, FULL.

-h, --help

Display a short help about command line opt ions.

-V, --version

Display version info.

5.3 Reports

This command can generate the following reports:
Filesystem content report(--fsinfo ~ option)
This displays HSM status of filesystem entries.

Example of output:

Status: new files (no HSM status)
Count: 1393
Volume: 176.25 MB (184815609 bytes)

Status: dirty (must be archived)
Count: 12450
Volume: 133.62 GB (143473382523 bytes)

Status: being retrieved
Count: 255
Volume: 25.42 GB (27294517166 bytes)

Status: being archived

Count: 564

Volume: 68.16 GB (73186242724 bytes)
Status: up-to-date (can be purged)

Count: 1253766
Volume: 987.63 GB (1060459637637 bytes)

User info report (--userinfo ~ option)

This displays user file statistics (or only therugigen in parameter).

Example of output:
User: root
Type: directory
Count: 8426
Space used: 34.29 MB (70232 blks)
Dircount min: 0
Dircount max: 4525
Dircount avg: 13
Type: file
Count: 101398
Space used: 3.44TB (7382951640 bl ks)
Size min: 0 (0 bytes)
Size max: 8.00 GB (8589934592 by tes)
Size avg: 35.56 MB (37286674 byte s)

Group info report (--groupinfo option)

Same report as ‘userinfo’, for groups.

Top file size(--topsize ~ option)

This option displays a list of largest files, witkeful information: path, size, last access time,
last modification time, owner, stripe information.

Example of output:

Rank: 1

Path: Iptmp/groupl/toto/opt/lib/gcj-4
Size: 69.57 GB (74700554240 bytes)
Last access: 2009/01/13 07:24:56

Last modification: 2009/01/13 07:22:04

.3.2-9/classmap.db

Owner/Group: toto/groupl
Stripe count: 2
Stripe size: 4.00 MB (4194304 bytes)

Storage units: OST #16, OST #15

Rank: 2
Path: /ptmp/vm/Fortoy578
Size: 8.00 GB (8589934592 bytes)

Last access: 2009/01/14 17:28:20
Last modification: 2009/01/14 17:28:20

Owner/Group: root/root
Stripe count: 2
Stripe size: 4.00 MB (4194304 bytes)

Storage units: OST #2, OST #1

Top purge candidates(--toppurge option)

This displays files that are likely to be releadedt, if disk space is needed. Also, this
command gives an overview of oldest entries ofsfistem. Note that this is only an
estimation, and those entries may not be purgdéldely have been moved or accessed since
they were scanned. This returns entry path and, tgse access and modification time, and
storage information (size, blocks, stripe info...).

Rank: 1

Path: Iptmp/vm/benchs/bonnie++-1.03a/ zcav.8
Type: file

Last access: 2009/01/13 08:26:31
Last modification: 2009/01/13 08:26:31
Size: 2.20 KB (2253 bytes)
Space used: 4.00 KB (8 blocks)
Stripe count: 2

Stripe size: 4.00 MB (4194304 bytes)
Pool: arrayl

Storage units: OST #2, OST #3

Rank: 2
Path: Iptmp/vm/benchs/bonnie++-1.03a/ bonnie.h.in
Type: file

Last access: 2009/01/13 08:26:31
Last modification: 2009/01/13 08:26:31
Size: 1.36 KB (1391 bytes)
Space used: 4.00 KB (8 blocks)
Stripe count: 2

Stripe size: 4.00 MB (4194304 bytes)
Storage units: OST #7, OST #8

Top disk space consumeré-topusers option)

Display users who consume the larger disk space.

Rank: 1

User: tom

Space used: 3.45TB (7409880032 blks)

Nb entries: 223746

Size min: 0 (O bytes)

Size max: 8.00 GB (8589934592 bytes)

Size avg: 16.17 MB (16958395 bytes)

Rank: 2

User: charly

Space used: 71.80 GB (150570152 blks)

Nb entries: 73721

Size min: 0 (0 bytes)

Size max: 69.57 GB (74700554240 bytes)
Size avg: 1018.71 KB (1043154 bytes)
Daemon’s activity (--activity option)

This reports the last actions Robinhood did, aed $tatus: last migration, last purge...
Last Filesystem scan: 2009/09/07 12:59:01

Storage unit usage max: 82.55%

Last migration: 2009/09/07 13:04:36

Status: running

Migration info: migrate all matching entr ies
Last purge: 2009/09/01 15:33:34

Target: OST #5

Status: OK

Deferred removals(--deferred-rm option)

Lists files that must be deleted in the HSM, tHast known path and when they will be
effectively removed:

Rank: 1

fid: [0x20000400:0x1A8:0x0]

Last known path: /mnt/lustre/tmp_dir/file.1
Lustre rm time: 2009/09/09 15:57:44
HSM rm time: 2009/09/17 15:57:44

Dump commands(--dump-all, --dump-user, --dump-group,
--dump-ost, --dump-status)

These options can be used for listing entries wigfiven critera.

Example 1: listing all entries on OST #14:

rh-hsm-report --dump-ost 14

type, status, size, owner, g roup, path

file, new, 16.26 KB, root, root, /mnt/lustre/config.h.in

file, synchro, 48, root, root, /mnt/lustre/ChangelLog

file, synchro, 186.55 KB, root, root, /mnt/lustre/aclocal.m4

file, new, 42.40 KB, root, root, /mnt/lustre/config.guess

file, new, 35.23 KB, root, root, /mnt/lustre/libsysio/Makefile.in
file, modified, 29.77 KB, root, root, /mnt/lustre/libsysio/config.sub
file, new, 705.89 KB, root, root, /mnt/lustre/configure

Example 2: listing all modified entries undent/lustre/dirl

rh-hsm-report --dump-status=mod —filter-path=/mn tlustre/dirl
type, status, size, owner, g roup, path
file, modified, 41.39 KB, root, root, /mnt/lustre/dirl/data.1
file, modified, 4.21 GB, root, root, /mnt/lustre/dirl/data.2

file, modified, 16.94 MB, root, root, /mnt/lustre/dirl/subdir/data.3

Known bugs

* Process terminates with SEGFAULT when MySQL serverestarts

Cause:

This is due to a bad resilience of MySQL client ABlIserver crash when using
prepared statements. This is known as bug #33384MySQL tracker
(check current bug status hefiep://bugs.mysgl.com/bug.php?id=33384).

Workaround:
Disable prepared statements at compilation timegugtonfigure --disable-
prep-stmts ' before building Robinhood RPM.

* Many <defunc>rh-hsm’ process when handling Changelogs

Cause:
In Lustre 2.0-alpha5/6 release, liblustreapi faaksrocess each time the changelog
is reopened, but robinhood doesn't trap SIGCHLD.

Workaround:
Make robihood trap SIGCHLD, by specifying the feliog option to configure:

"--enable-llapi-fork-support

